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I. INTRODUCTION

Solving a rendering equation using the Monte Carlo method
is a computational approach in computer graphics to simulate
the complex process of light transport within a scene. The
rendering equation describes the distribution of light in a three-
dimensional environment. It accounts for how light interacts
with surfaces, materials, and the surrounding medium, making
it a fundamental equation in computer graphics for realistic
image synthesis. The Monte Carlo method, in this context,
involves using random sampling techniques to approximate the
solution to the rendering equation. Instead of trying to solve
the equation analytically, which can be extremely challenging
due to its complexity, Monte Carlo methods rely on statistical
sampling to estimate the integral of the rendering equation.

II. CONCEPTS FOR FAMILIARIZATION

• Normalize
If v =

√
v2x + v2y + v2z is a vector, then its normalized

version, denoted as v̂, is given by:

v̂ =
v

∥v∥
=

v√
v2x + v2y + v2z

• Dot product
The dot product of two vectors U and V, denoted as

Fig. 1. Visualisation of dot product

U ·V, is defined as:

U ·V = u1v1 + u2v2 + · · ·+ unvn = ∥U∥∥V∥ cos θ

In this project, we will use this to determine the angle
through the cosine since the cosine makes it unambigu-
ous.

• Cross product
The cross product of two vectors U and V, denoted as

Fig. 2. Visualisation of cross product

U×V, is defined as:

U×V = (u2v3 − u3v2) i+(u3v1 − u1v3) j+(u1v2 − u2v1)k

We will use this for finding normal vector as when a ray
hits a glass surface, the ray tracer must determine if it
is entering or exiting the glass to compute the refraction
ray.

• Linear Operators Theory
Linear operators act on functions like matrices act on
vectors or discrete representations.

h(u) = (M ◦ f)(u)

Here M is linear operator, f and h are functions of u.
Basic linearity relation holds:

M ◦ (af + bg) = a(M ◦ f) + b(M ◦ g)

Here a and b are scalars, f and g are functions. Example
with integration:

(K ◦ f)(u) =
∫

k(u, v)f(v)dv



III. IMPLEMENTATION

A. Main idea

As was mentioned, path tracing – a Monte Carlo method
in computer graphics, is utilized for rendering images
of three-dimensional scenes. Essentially, the algorithm
involves integrating all illuminance arriving at a specific
point on an object’s surface. Subsequently, this illumi-
nance is modulated by a surface reflectance to calculate
the proportion directed towards the viewpoint camera.
This integration process is iterated for each pixel in the
output image.

Fig. 3. Visualisation of Path Tracing. Image from [6].

B. Rendering equation

The Rendering equation of Path Tracing states that the
quantity of light intensity exiting a specific point in a
particular direction equals the sum of the emitted light
intensity from that point in that direction, along with
the incoming light intensity from other sources that are
subsequently dispersed in that direction.

Fig. 4. Visualisation in terms of Rendering Equation, [6]

Lr(x, ωr) = Le(x, ωr)

+

∫
Ω

Lr(x
′,−ωr)f(x, ωr, ωi) cos θidωi

Rendering Equation for Path Tracing

– Lr(x, ωr): This represents the radiance leaving point
x in the direction ωr (unknown). Radiance is the
amount of light flowing through an infinitesimal area
in a particular direction. Here, ωr is the direction in
which the light is being observed or measured.

– Le(x, ωr): This term represents the emitted radiance
at point x in the direction ωr (known). In simpler
terms, it’s the light that is directly emitted by the
surface at point x and is observable in the direction
ωr. This could be light emitted by a light source,
such as a light bulb or the sun, or it could be
light emitted by the surface itself, such as glowing
materials.

–
∫
Ω

Lr(x
′,−ωr)f(x, ωr, ωi) cos θidωi: This term rep-

resents the reflected radiance received at point x from
all other points in the scene. Let’s break it down
further:

∗ x′: Represents all points in the scene that may
contribute to the reflected light at point x.

∗ −ωr: Represents the incoming light direction,
which is opposite to the direction of observation
ωr.

∗ Lr(x
′,−ωr): This represents the radiance leaving

point x′ in the direction opposite to ωr (unknown).
It contributes to the reflected light observed at
point x.

∗ f(x, ωr, ωi): Is the bidirectional reflectance dis-
tribution function (BRDF) (known). It describes
how light is reflected at a surface point x given
an incoming light direction ωi and an outgoing
light direction ωr. In simpler terms, it describes
the surface’s reflective properties.

∗ cos θi: Represents the cosine of the angle between
the surface normal at point x and the incoming
light direction ωi (known). This factor accounts
for the fact that surfaces perpendicular to the
incoming light receive more light than surfaces
at an angle.

∗ dωi: Represents the solid angle over which the
incoming light is integrated. This essentially sums
up the contributions of light from all directions.

It means that we have to calculate radiance (intensity
of light), that is coming from some point on object
surface (x) in some exact direction (ωr) We can do this
by adding the self-emitted radiance from x in direction
ωr (0 unless point x is a light source) and the reflected
light. Here, we also must add (integrate) all of the light
coming in to point x from all directions, modulated by
the chance that it scatters in direction ωr.

C. Solving equation

We will solve the equation described above by solving
Fredholm Integral Equation of second kind. It is repre-



sented as:

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t) dt

where ϕ(x) is the unknown function, f(x) is a given
function, K(x, t) is the kernel of the integral equation,
and λ is a parameter. In our case ϕ(x) is Lr(x, ωr), f(x)
is Le(x, ωr), K(x, t) is f(x, ωr, ωi) cos θi, what is Light
Transport operator (it describes how light interacts with
surfaces (BRDF) and is transported throughout a scene,
essential for simulating realistic lighting in computer
graphics) and ϕ(t) is Lr(x

′,−ωr). So, we can rewrite
our equation in the following way:

L = Le + T ◦ L

Where L – vector of values that we are trying to find, Le

– vector of radiance values of points (known), and T –
light transport matrix. Here T ◦ L is:

(T◦L)(x, ωr, ωi) ≡
∫
Ω

Lr(x
′,−ωr)f(x, ωr, ωi) cos θidωi

Now, we can solve this system:

L = Le + T ◦ L

IL− TL = Le

(I − T )L = Le

L = (I − T )−1Le

Since I represents the identity matrix, we have:

L = (I − T )−1Le

Using the Neumann series expansion for (I − T )−1:

L = (I + T + T 2 + T 3 + . . . )Le

L = (Le + LeT + LeT
2 + LeT

3 + . . . )

This series converges, and the n-th term corresponds to
n bounces of light. It means that E – emission directly
from light sources, EK – direct illumination of surface,
EK2 – one indirect ray bounce, EK3 – two indirect ray
bounce, and so on.

D. Monte Carlo method

As we use the Monte Carlo method, we should use the
next formula:

Lr(x, ωr) = Le(x, ωr)+
1

N

N∑
i=1

Lr(x
′,−ωr)f(x, ωr, ωi) cos θi

p(ωi)

The equation represents the rendering equation, which
describes how light interacts with surfaces in a scene.
Lr(x, ωr) denotes the radiance leaving point x in direc-
tion ωr. This is the outgoing radiance from a surface point
in a particular direction.

Le(x, ωr) represents the emitted radiance at point x in
direction ωr. This term accounts for any light emitted
directly from the surface.
The integral term

∫
Ω

Lr(x
′,−ωr)f(x, ωr, ωi) cos θidωi

accounts for indirect lighting. Here, Lr(x
′,−ωr) is the

incoming radiance from a neighboring point x′ in the
direction opposite to ωr, f(x, ωr, ωi) is the bidirectional
reflectance distribution function (BRDF) describing how
light is reflected from the surface, cos θi accounts for
the angle between the incident light direction ωi and the
surface normal, and dωi represents the solid angle over
which we integrate.
In the Monte Carlo method, we approximate this integral
by taking multiple samples (N ) of the incoming radi-
ance and averaging the results. Each sample contributes
Lr(x

′,−ωr)f(x,ωr,ωi) cos θi
p(ωi)

, where p(ωi) is the probability
density function used for sampling the incoming light
direction. Then, we average numerous samples for each
pixel to produce a smoother image. Based on the above,
we should implement the next algorithm.

Fig. 5. Path Tracing Main loop, [7]

E. Bidirectional Reflectance Distribution
Function (BRDF)

The Bidirectional Reflectance Distribution Function
(BRDF) characterizes how a surface reflects light, consid-
ering both the illumination and viewing angles. It is influ-
enced by various factors, including the surface’s structural
and optical properties, such as shadowing, scattering,
transmission, absorption, and emission. Additionally, the
BRDF depends on wavelength and is influenced by facet
orientation distribution and density.
In remote sensing, BRDF plays a crucial role in cor-
recting view and illumination angle effects, deriving
albedo, land cover classification, cloud detection, and
atmospheric correction. It serves as a fundamental bound-
ary condition for radiative transfer problems in the at-
mosphere, making it pertinent for climate modeling and
energy budget investigations.



Fig. 6. Causes of BRDF, from Wolfgang Lucht, 1997, [4]

The modern definition of this function is as follows:

fr(ωi, ωo) =
dLr(ωo)

dEi(ωi)
=

dLr(ωo)

Li(ωi) cos θidωi

where L is luminance, E is illuminance, and θi is the
angle between the direction ωi and the normal n.

Fig. 7. BRDF formula visualization, [2]

F. Rays and shapes

• Ray A ray is a parametric line with an origin (o) and a
direction (d). A point along the ray can be defined using
a parameter, t:

P (t) = o+ td

The core routines of the ray tracer intersect rays with
geometric objects.

• Sphere We define a sphere with its center (C(cx, cy, cz))
and radius (r). It’s equation:

(x− cx)
2 + (y − cy)

2 + (z − cz)
2 = r2

In vector form:

(P − C) · (P − C) = r2

Where P are points of intersections of ray and sphere
with center in point C.

G. Intersection handling

For finding the points, mentioned above, we should
substitute ray equation from the sphere vector equation:

(o+ td− C) · (o+ td− c) = r2

Fig. 8. Ray P intersects circle (C, r), [2]

(D ·D) · t2+2D · (o−C) · t+(o−C) · (o−C)− r2 = 0

Then we solve this equation for t and get:

t =
−b±

√
b2 − 4ac

2a

Where a = (D ·D)
b = 2D · (o− C) and
c = (o− C) · (o− C)− r2

H. Möller–Trumbore intersection algorithm

The ray is determined by an origin point O and a
directional vector v⃗. Any point along the ray can be
represented as r⃗(t) = O + tv⃗, where t varies from zero
to infinity. The triangle is described by three vertices,
denoted v1, v2, and v3. The plane containing the triangle,
necessary for computing the intersection of the ray with
the triangle, is defined by a point on the plane, such as
v1, and a vector orthogonal to all points on that plane,
determined by the cross product of the vectors from v1
to v2 and from v1 to v3:



n⃗ · (P1 − P2) = 0,

where n⃗ = (v2−v1)×(v3−v1), and P1 and P2 represent
any points on the plane.

• The condition of parallelism of a ray with a triangle
Initially, determine whether the ray intersects the plane
containing the triangle, and if so, identify the coordinates
of the intersection. The ray fails to intersect the plane
only when its direction vector aligns parallelly with the
plane. This scenario occurs when the dot product between
the ray’s direction vector and the plane’s normal vector
equals zero. Conversely, if the dot product is non-zero,
the ray intersects the plane at some point, albeit not
necessarily within the confines of the triangle.

• Check the intersection of the ray and the plane of the tri-
angle outside it Using barycentric coordinates, any point
within the triangle can be expressed as a combination of
the triangle’s vertices:

P = wv1 + uv2 + vv3

where w, u, and v are coefficients that are non-negative
and sum up to 1. Subsequently, w can be replaced with
1− u− v, yielding:

P = (1− u− v)v1 + u(v2 − v1) + v(v3 − v1)

Observing that e⃗1 = v2−v1 and e⃗2 = v3−v1 are vectors
along the triangle’s edges, they together span a plane.
Each point on this plane can be represented as ue⃗1+ve⃗2,
translated by v1 onto the triangle’s plane.
To determine u and v for a specific intersection, equate
the ray expression with the plane expression and isolate
the variables and constants:

O + tD = v1 + u(v2 − v1) + v(v3 − v1)

This system of linear equations with three unknowns (t,
u, and v) and three equations can be represented as a
matrix-vector multiplication:

[
−D (v2 − v1) (v3 − v1)

] t
u
v

 = O − v1

This equation has a solution when the matrix has three
linearly independent column vectors in R3, indicating
non-collinear triangle vertices and a non-parallel ray to
the plane.

I. Bounding Volume Hierarchies (BVH)

Bounding Volume Hierarchies (BVHs) represent a
method to expedite ray intersection computations by
dividing primitives into nested sets through subdivision.
Unlike spatial subdivision, which primarily divides space
into disjoint sets, BVHs focus on partitioning primitives.
As depicted in Figure 7, a BVH for a basic scene consists

of nodes storing bounding boxes for the primitives be-
neath them, with the actual primitives stored in the leaves.
Consequently, while traversing the tree with a ray, any
segment where the ray doesn’t intersect a node’s bounds
permits skipping the subtree beneath that node.

Fig. 9. (a) A small collection of primitives (b) The corresponding bounding
volume hierarchy[8]

Primitive subdivision guarantees that each primitive
appears just once in the hierarchy, while spatial
subdivision might lead to primitive intersecting multiple
regions, causing multiple intersection tests as the ray
moves through. This also minimizes memory needs for
hierarchy representation. In a binary BVH with one
primitive per leaf, the total node count is 2n − 1, with
n primitives leading to n leaf nodes and n − 1 interior
nodes. Fewer nodes are required if leaves hold multiple
primitives. BVH construction is generally faster than
kd-trees, though kd-trees often offer slightly quicker ray
intersection tests but require significantly longer build
times. BVHs are usually more numerically robust and
less prone to missed intersections due to rounding errors
than kd-trees.
We adopt a top-down approach, dividing the input
set into subsets, enclosing them in chosen bounding
volumes, and recursively repeating until each subset
contains only one primitive (reaching leaf nodes).
Although top-down methods are easy to implement and
quick to construct, they typically don’t yield the most
optimal trees overall.

• BVH Construction BVH construction in this implemen-
tation comprises three stages. Initially, bounding details
for each primitive are calculated and stored in an array
for subsequent tree construction. Then, the tree is erected
using the specified algorithm, resulting in a binary tree
with interior nodes pointing to their children and leaf
nodes referencing one or more primitives. Lastly, the tree
is transformed into a more streamlined, pointerless rep-
resentation for optimized rendering. For interior nodes,
partitioning the collection of primitives between the two



children subtrees is necessary. With n primitives, there are
typically 2(n−1)−2 potential ways to partition them into
two nonempty groups. In practical BVH construction,
partitions are usually considered along a coordinate axis,
resulting in approximately 3n candidate partitions. (Each
primitive can be placed in either the first or second
partition along each axis.) Here, we opt for one of
the three coordinate axes to partition the primitives.
We choose the axis associated with the largest extent
when projecting the centroid of the bounding box for
the current set of primitives. (Although an alternative
would be to try all three axes and select the most optimal
result, in practice, this method is effective.) This approach
often yields satisfactory partitions in various scenes, as
illustrated in Figure 8. The primary aim of partitioning

Fig. 10. Choosing the Axis along Which to Partition Primitives, [8]

here is to choose a partition of primitives with minimal
overlap in the bounding boxes of the resulting sets.
Excessive overlap necessitates traversing both children
subtrees more frequently during tree traversal, leading to
increased computational overhead compared to efficiently
pruning away collections of primitives. This concept of
identifying optimal primitive partitions will be further
developed shortly in the discussion of the surface area
heuristic. If all centroid points coincide (i.e., the centroid
bounds have zero volume), recursion halts, and a leaf
node containing the primitives is generated, none of the
splitting methods provided are effective in this uncom-
mon scenario.
In cases where primitives exhibit significant overlap in
bounding boxes, this splitting method might struggle to
divide the primitives into two distinct groups.

• Partition primitives into equally sized subsets The method
divides the primitives into two equal-sized subsets. The
first subset comprises the n/2 primitives with the smallest
centroid coordinate values along the chosen axis, while
the second subset consists of the remaining primitives

with the largest centroid coordinate values. Although this
approach can yield favorable outcomes on occasion, it
performs inadequately in scenarios like the one illustrated
in Figure 9. It takes a start, middle, and ending pointer as

Fig. 11. (a) Splitting based on the centroid midpoint along the chosen axis
(thick blue line) is effective for certain primitive distributions, as depicted.
The dashed lines outline the bounding boxes of the resulting groups. (b)
In distributions like this, selecting the midpoint is suboptimal, resulting in
substantial bounding box overlap. (c) Splitting the same primitives along
the indicated line yields smaller, non-overlapping bounding boxes, enhancing
rendering performance. [8]

well as a comparison function. It orders the array so that
the element at the middle pointer is the one that would
be there if the array was fully sorted, and such that all
of the elements before the middle one compare to less
than the middle element and all of the elements after it
compare to greater than it. This ordering can be done
in O(n) time, with n the number of elements, which is
more efficient than the O(n log n) of completely sorting
the array. Using all written above, we got this (Fig.10
and Fig. 11):

J. All together

• Image
Set image width, height, image array etc.

• Camera
Set image position, direction vector and view angles.



Fig. 12. Car model

Fig. 13. Our result of BVH for car model

• Build pixels
For each pixel, we do 2x2 subpixels. The subpixel colors
will be averaged. Calculate the array index for pixel(x,y).
Also, we use a Tent filter for determining the location of
sample rays within the pixel.

• Radiance
We use our radiance function to estimate radiance and
add the gamma-corrected subpixel color estimate to the
pixel color. Obviously, it depends on the properties of the
surface that the ray intersects or bounces from.

• Recursion handling
We stop the recursion randomly based on the surface
reflectivity. We use the maximum component of the
surface color and don’t do stop until after depth 5.

• Mirror reflection handling
As we know, the angle of incidence equals the angle of
reflection. It’s visualisation you can see at fig.7.

• Refraction handling
When light travels from one substance or medium into
another, the light waves may undergo a phenomenon

known as refraction. In our case, handling means finding
a solution to the next equation:

T =
na(D +N(D ·N))

nb
+N

√
1− n2

a(1− (D ·N)2)

n2
b

Where na and nb are refractive indexes, that give us the
speed of light within a medium compared to the speed
of light within a vacuum. Also, we implemented Fresnel

Fig. 14. Visualisation of refraction

reflectance, which handles some cases of rays behavior
at the intersection of environments, like the percentage
of reflected/refracted light from a glass surface based on
incident angle (θa), reflectance at normal incidence,where
n = na/nb

F0 =
(n− 1)2

(n+ 1)2

and reflectance at other angles:

Fr(θ) = F0 + (1− F0)(1− cos θ)5

Rules described above, we use in the following way: 2
more recursive steps if the current depth is ≤ 2 and 1
otherwise.



IV. RESULTS

We used all the written above gave us all the necessary
knowledge to get the result:

Fig. 15. Our result for Cornell box

The code of the project is available at https://github.com/
mvysotskyi/path-tracing.
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