Cross-platform Renderer for Volumetric Bodies
with Vulkan API

Roman Naumenko
Faculty of Applied Sciences
Ukrainian Catholic University

L’viv, Ukraine
roman.naumenko@ucu.edu.ua

Abstract—This project demonstrates the implementation of a
cross-platform rendering engine, leveraging the Vulkan API’s
capabilities to render volumetric bodies efficiently. Building upon
a foundational understanding of OpenGL, it explores Vulkan’s
functionality as a modern, efficient, and low-overhead graphics
APIL. The robust application developed not only serves as a scene
renderer but also supports a graphical user interface, showcasing
Vulkan’s versatility in complex rendering tasks. Utilizing raw
Vulkan API for rendering and GLFW for window creation
and OS interaction on both Windows and Linux, the project
underscores Vulkan’s comparative advantages over traditional
APIs like OpenGL and highlights the developmental journey and
learning curve associated with it.

To achieve high-fidelity images when rendering volumetric
objects like clouds, smoke, and fog, the method of ray marching
was employed. This particular method is often utilized in modern
game engines for the same purpose, as it not only can produce
visuals indistinguishable from reality but also possesses signifi-
cant potential for optimization and parallelization. This allows
it to operate efficiently on GPUs and be executed exclusively in
the fragment shader.

Index Terms—Vulkan, volumetric clouds, ray marching, ren-
dering framework

I. INTRODUCTION

For a long time, rendering volumetric objects such as clouds,
fog, and smoke in real-time applications was an unattainable
goal. However, with the advancement in computing capabili-
ties of consumer-level computers, modern GPUs now facilitate
the parallelization of previously sequential algorithms. This
development has elevated the quality of in-game volumetrics
to a level where they can rival the realism of actual ones. As
can be seen on Fig. 1.

Concurrently, extensive research in rendering algorithms has
been instrumental in this progress. A standout contribution in
this field is the work of Guerrilla Games [1], particularly their
engine developed for the "Horizon: Zero Dawn” game series.

For this resource-intensive task, Vulkan, regarded as the
successor to OpenGL, became the ideal choice due to its
flexible and low-overhead API. For learning purposes, the
entire rendering system was built from scratch using only the
Vulkan SDK, deliberately avoiding any bootstrap libraries to
gain a deeper understanding of the underlying processes and
Vulkan’s capabilities.

Fig. 1. Clouds in Unreal Engine. [2]

II. RAY MARCHING OVERVIEW
A. In general

Ray marching is a rendering technique used for accurately
depicting volumetric phenomena like clouds and fog. It op-
erates by casting rays from the viewer’s perspective into the
scene and iteratively “marching” these rays forward in small,
fixed steps until they hit an object or reach a maximum
distance.

At each step, the algorithm evaluates the scene’s density
function to determine the presence of volumetric material. If
material is encountered, the algorithm computes lighting and
color contributions at that point, integrating these over the ray’s
path to produce the final pixel color. The precision of the
render is controlled by the step size: smaller steps increase
accuracy and visual quality but require more computational
resources.

Ray marching excels in GPU environments due to its
parallel nature, as each ray can be processed independently.
This makes it particularly effective for real-time applications
where rendering performance is critical.

B. Math behind the algorithm

One of the main optimization techniques underlies the way
volume is contained in the bounding box and then ”projected”
on its faces. When calculating pixel color, we do not sample
points on the ray from the camera all the way to infinity.
Indeed, the only points considered for sampling are those



contained inside the bounding volume. These points are chosen
on the ray segment between two points of intersection of the
camera ray with a box (Fig. 2).

@ Ray Samples outside media

Ray Samples inside media

A A4 b

Camera Rays\ ~ Distance Traveled within media

Fig. 2. Ray marching principles [3].

So far, the algorithm describes the opacity as only cloud
ray marching. This means that what is called a cloud here
is actually just a glowing smoke. To add lighting, apart from
sampling the volume along the camera vector, we also need
to track the light scattering out of the volume on its way from
the sample to the light source (Fig. 3).

VAV A Unshadowed point
/

Shadowed Point
Camera Ray

Shadow Density Accumulation

Fig. 3. Shadow tracing [3].

To calculate the intensity of the light transmitted in a certain
direction from a given point in the volume, denoted by «, we
apply the Beer-Lambert law. This involves taking the inverse
of the exponent of the distance traveled through the volume
d, multiplied by the media’s thickness at that point ¢:

a=e (1)

Then, we blend the incoming light C;,, with the media’s
own radiance at the sampled point S, using the coefficient «,
to obtain the final color of the light C,,;:

Cout - acin + (]- - a)Sc (2)

III. RENDER ENGINE TECHNICAL DETAILS
A. Vulkan API multhreading

Although the software engineering involved in the rendering
system is complex and cannot be fully detailed in this report’s
format, several crucial points merit mention.

In contrast to OpenGL and DirectX 11, the Vulkan API is
known for being extremely explicit and flexible, to the point
that it even supports multiple CPU threads for interaction
with its infrastructure. Therefore, it is possible to submit

command buffers, which are essentially lists of commands, to
the command queue from different threads [4] (Fig. 4); This
feature was not fully utilized in this project due to the lack of
necessity. But the rendering framework was designed in way
so it would be easy to add support for it when needed.

Thread1 Thread2
CPU
'submit command ‘submit command
buffer buffer
Q command
ueue buffer

execute
command

GPU

Fig. 4. Multithreaded command submission.

B. Synchronization techniques

When the GPU finishes rendering the frame, it can stream it
to the video port to present it on screen. However, all modern
display have their own refresh rate, usually 60Hz, which means
that a full cycle of image presentation takes around 0.0167s,
and a big chunk of that time is allocated for updating the
pixels’ colors. Which leaves a place for visual artifacts like
screen tearing [5] when a new frame has finished rendering
before the previous one is fully shown on the display.

To address this issue, numerous presentation modes have
been developed that enable vertical synchronization through
multiple buffering [6]. While these techniques eliminate visual
artifacts, they require the renderer to process multiple frames
concurrently to avoid pipeline stalls. In Vulkan, nearly all
commands processed by the GPU are asynchronous, with
only the order execution start guaranteed by the specification
[7] as they are submitted on the CPU. To safeguard critical
sections of data that must be processed sequentially, Vulkan
provides special synchronization primitives called semaphores.
These are utilized by passing handles to consecutive API calls,
where the first call signals the semaphore and the second waits
for this signal. This method allows for organizing a graphics
pipeline into logical sections: acquiring the image, rendering
the frame, and sending it for presentation, as shown in Fig. 5

CPU timeline
. Presentimage

Render frame

Acquire image

H GPU timeline
render finished
semaphore

image- ready
semaphore

Fig. 5. Pipeline synchronization.



IV. CONCLUSION

The primary objective of this project — to learn Vulkan’s
principles and develop a universal rendering framework — was
successfully met. However, it’s important to note that while
Vulkan is a powerful tool for creating efficient, low-overhead
rendering and computing applications, it also presents a high
level of complexity and can be unnecessarily sophisticated for
tasks like those tested in this project. The code of the project is
available at https://github.com/Raspy-Py/VolumetricRenderer.

REFERENCES

[1] A. Schneider, “The real-time volumetric cloudscapes of horizon - zero
dawn,” 2015. [Online]. Available: https://advances.realtimerendering.com

(2]

(3]

(4]

(5]

(6]

(7]

“Volumetric ~ clouds,” 2021. [Online]. Available: https://docs.
unrealengine.com/4.26/en- US/BuildingWorlds/LightingAndShadows/
VolumetricClouds/

“Creating volumetric ray marcher.” [Online]. Available: https://shaderbits.
com/blog/creating-volumetric-ray-marcher

“Drawing a triangle - command buffers.” [Online]. Available: https:
/Ivulkan-tutorial.com/Drawing_a_triangle/Drawing/Command_buffers

“Screen tearing.” [Online]. Available: https://en.wikipedia.org/wiki/
Screen_tearing

“Multiple buffering.” [Online]. Available: https://en.wikipedia.org/wiki/
Multiple_buffering

“Vulkan 1.3 specification. synchronization and cache control.” [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3/html/chap7.html



