
Computer System Architecture Project Report
Serhii Ivanov∗, Sviatoslav Lushnei∗, Oleh Omelchuk∗, Ivan-Vitalii Petrychko∗,

∗ Faculty of Applied Sciences of Ukrainian Catholic University, Lviv, Ukraine

Abstract—The Real-Time Raytracer Project aims to create
a high-performance, interactive rendering system capable of
generating realistic and immersive graphics in real time. This
project report outlines the key objectives, methodologies, and
outcomes of our endeavor to develop a state-of-the-art raytracer
capable of rendering complex scenes with accurate lighting,
shadows, reflections, and refractions.

I. INTRODUCTION

A. What is Raytracing

Raytracing is a rendering technique used in computer graph-
ics to generate realistic images by simulating the behavior
of light. It traces the path of light rays as they interact
with objects in a virtual scene, calculating how the rays are
reflected, refracted, and absorbed by various surfaces.

The basic idea behind raytracing is to simulate the physical
behavior of light by following the path of individual rays.
These rays are typically emitted from a virtual camera or eye
position and travel through the scene, interacting with objects
they encounter along the way. By tracing the paths of these
rays, the technique can determine the color and intensity of
light arriving at each pixel on the image plane.

B. General algorithm overview

Fig. 1. How it works.

The process of raytracing involves several steps. First, the
primary rays are generated from the camera position through
each pixel on the image plane. These rays are then traced into
the scene, and intersection tests are performed to determine if
they hit any objects or surfaces.

When an intersection occurs, secondary rays are generated
from the intersection point and traced further into the scene.
These rays can be used to simulate effects such as reflections,
refractions, and shadows. By recursively tracing secondary

rays and considering the contributions of each ray to the final
pixel color, raytracing produces accurate lighting and shading
effects.

Finally, computed colors are combined and mapped to
2D screen coordinates for the final image. As long as the
calculation of individual pixel results is unrelated, they can
be effectively calculated in parallel.

C. Related Works

Raytracers have a wide range of applications in various
fields, including entertainment, architecture, engineering, and
scientific visualization. Over the years, they have made signifi-
cant progress in computational performance and visual quality.
There were some important works for various approaches in
this field.

One notable technique is the Whitted ray tracing algorithm
introduced by Whitted in 1980. This algorithm enables the
simulation of global illumination effects like reflections and
refractions through recursive ray tracing. By tracing rays re-
cursively, the algorithm accurately models how light interacts
with different surfaces in a scene, resulting in more realistic
visual effects.

Another significant technique is path tracing, first introduced
by Kajiya in 1986. Path tracing uses Monte Carlo sampling
to simulate the paths of light rays in a scene. Path tracing
approximates global illumination effects by randomly sam-
pling different light paths, improving renderings’ accuracy
and visual appeal. Path tracing is particularly effective in
generating soft shadows.

When talking about rendering, we can not omit Rasteriza-
tion, a widely adopted rendering technique introduced in the
seminal paper ”A Comprehensive Theory of Rasterization”
by Foley, Van Dam, et al. in 1982. It was developed as
a means to efficiently render graphics on limited hardware,
revolutionizing the real-time rendering of complex scenes

II. IMPLEMENTATION SETUP

A. Used libraries

The main code is written in C++ and GLSL(OpenGL
Shading Language). Almost all algorithms and optimizations
were calculated and written manually by us. However, we
incorporated certain libraries to assist with input/output and
other general functionalities:

• SDL – cross-platform library to efficiently manage win-
dows and input/output – used for drawing pixels on the
screen, reading keyboard and mouse input, and other
technical stuff



• GLM – (OpenGL Mathematics) library – used as a main
math library. We switched from our own math library to
this one because of the performance difference

• STB – a library that provides a simple and efficient
interface for loading images – used for reading images
into memory for further applying them as textures

• OpenGL – an open-source, cross-platform API for ren-
dering 2D and 3D graphics – used for GPU support

B. Scene

The scene refers to everything we can see in a virtual
environment, such as objects, lights, and the surrounding
environment.

• The Camera defines the point from which the virtual
scene is rendered, and the screen represents the image
plane onto which the scene is projected. The camera has
the following properties: position, rotation, and field of
view. They define the point and behavior of the rays.

• The Screen represents the image plane onto which the
virtual scene is projected. It is a 2D plane that corre-
sponds to the final image dimensions and behaves like a
window through which we view the virtual scene. The
screen has resolution and aspect ratio properties, which
also affect ray behavior.

• Movement Using the mouse and keyboard, we can
navigate our virtual world, move around, and rotate our
viewpoint. It is implemented by changing the Camera’s
position and its rotation angles. Input is read and tracked
using SDl functionality. To make smooth movements, we
measure the elapsed time between frames and, based on
that, calculate the distance to move.

C. Objects

1) Overview: The scene contains multiple objects of differ-
ent types. All of them have their position and rotation parame-
ters. Then, based on the specialization, additional attributes are
specified, such as a triangles list, points coordinated, direction
vectors, or other size parameters.

2) Graphical Object: The graphical object is a special type
of object that has intersect methods and some attributes related
to its size. Special Types of Graphical Objects

• Plane – defined by its normal
• Sphere – with additional characteristic as its radius
• PolyMesh – an object that consists of a collection of

triangles
Triangle is a basic geometric primitive used to represent

flat surfaces in a 3D scene. It consists of three vertices, each
with their normal connected by edges. Triangles are widely
used in rendering because they are simple to work with and
can approximate complex surfaces. Each triangle is related to
some MashObject and is given in its local coordinates (related
to the object’s position and rotation).

3) Matherial: Materials define visual properties such as
color, reflectivity, and shininess, influencing how light inter-
acts with object surfaces. Different material models, like the

Lambertian or Phong model(which we used), dictate how light
is reflected or absorbed by objects.

4) Texture: Textures provide colors and surface properties
to objects. They enable the mapping of 2D images onto
3D surfaces. Texture mapping involves associating texture
coordinates with object vertices and using these coordinates
to sample colors or other attributes from texture images.

D. Ray Intersection

1) Ray: Ray represents the path along which light travels.
It originates from the camera’s position and extends into
the scene, intersecting with triangles and objects. Rays are
essential for determining the color of the screen pixels, com-
puting reflections, and generating shadows. They are defined
by their origin (the camera’s position) and a direction vector.
We trace rays through each pixel on our screen and calculate
its intersections and reflections. By doing this, we can simulate
the behavior of light and generate realistic images.

2) Sphere Intersection: The idea behind solving the ray-
sphere intersection test is that spheres can be defined using
an algebraic form. if we consider that x, y, and z are the
coordinates of point P = (O + tD − C), we can write:

(O + tD − C)2 = R2

Where C is the center of the sphere in 3D space. O is the
point of the ray, and D is its direction vector It is easy to see
that it is a quadratic equation related to the variable t. Solving
it, we can find an intersect point(the closest one), or find out
that ray misses the sphere.

3) Plane Intersection: For planes, it is also easy to find in-
tersection points. Having point P0 on the plane and its normal
n, we can write that, for an intersection point P = O + tD:

(O + tD − P0) · n = 0

From that equation, we can get t and the intersection point or
state that the ray misses the plane.

4) Ray-triangle Intersection: To find the ray intersection
point with the triangle, we decided to use The Möller-
Trumbore algorithm. In this algorithm, a transformation is
constructed and applied to the ray’s origin. The transformation
yields a vector containing distance t to the intersection and the
barycentric coordinates u and v of the intersection. The point
on the triangle is given by:

T (u, v) = (1− v − u)V0 + uV1 + vV2

where u and v are the barycentric coordinates. Intersection
equation yields:

O + tD = (1− u− v)V0 + uV1 + vV2

The above can be thought of geometrically as translating
the triangle to the origin and transforming it to a unit triangle
in y, z coordinates with the ray direction lightened with x:



Fig. 2. Objects Hierarchy.

Fig. 3. Textures.

E. Lights

Lights simulate the sources of illumination in a scene. They
contribute to the shading and coloring of objects and affect
their appearance. They are characterized by their position,
intensity, color, and other attributes. Lights can have different
types:

• Point Light – emits light from a specific position in all
directions

• Directional Light – parallel to a specific direction,
simulates light from infinitely away sources

• Area Light – represent light sources that have a defined

Fig. 4. Texture and UV Coordinates representation.

shape and size, providing soft and diffused lighting effects
• Specular Light – light reflecting off a smooth surface in

a concentrated manner. It is reached by considering the
angle between the surface normal and the viewer’s line
of sight,

F. Model Loading

The .obj files contain essential data about the objects, in-
cluding the coordinates of each vertex position (v-coordinates),
vertex normals (vn-coordinates), triangles (f-coordinates), and
texture coordinates (vt-coordinates).

Vertex normals are vectors that represent the direction
perpendicular to a vertex or point on a 3D mesh or surface.
They play a crucial role in shading and determining the
behavior of light on the surface of an object. F-coordinates
give information about the vertexes of each triangle.



Fig. 5. The Möller-Trumbore algorithm.

Fig. 6. Lights.

Additionally, these files can provide information about
textures associated with the objects. The texture coordinates,
representing 2D image-texture coordinates, are matched to the
3D vertices.

Moreover, we have implemented scene saving and loading
from our custom .json files. That means that we can reload
pre-defined scenes at a later time.

III. PERFORMAINCE IMPROVEMENTS

A. Bounding Volume Hierarchy

The intersection of rays with triangles and other objects
takes about 99% of all computations. The time was linear
on a number of triangles, and we could improve that. We
implemented a bounding volume hierarchy, which reduces our
complexity from linear to logarithmic. The technique is about
recursively dividing the objects into bounding boxes up to the
point when each box contains only a few triangles/objects. The
logic of traversing the three that we got from the algorithm

Fig. 7. ”.obj” file.

is as such: if a ray intersects a bounding box, we check for
intersection with all child boxes(or triangles if it is a leaf
node), and if not – we just skip it. Visually, our logic looks
like shown in Fig. 8.

B. Optmizations

1) Precalculating Values: Since each triangle in a 3D scene
needs to calculate its global coordinates, it is advantageous
to precalculate these values and update them only when
necessary. By storing the precalculated global coordinates of



Fig. 8. Bounding Volume Hierarchy.

Fig. 9. Bounding Volume Hierarchy.

each triangle, we can minimize the computational overhead
and improve efficiency when rendering the scene.

2) Face Culling: We have implemented face culling for the
triangles in our rendering system. This technique allows us to
selectively render only the front-facing triangles and discard
the back-facing ones. By utilizing face culling, we optimize
the rendering process by reducing the number of unnecessary
calculations and improving the overall performance of our
rendering pipeline.

3) Rotation with quaternionis: As long as we have cam-
era and object rotations, with triangles’ global coordinates
calculated using the main object position and orientation, it
is essential to have precise and fast rotations evaluations.
We utilized quaternions due to their compact and efficient
representation of orientation changes. Quaternions extend the
concept of complex numbers to four dimensions: a scalar
part (w) and a vector part (x, y, z). Typically denoted as
q = w+xi+yj+zk, this representation offers advantages over
other rotation representations like Euler angles. Quaternions

Fig. 10. BVH vs no BVH.

are well-suited for interpolating and combining rotations,
making them ideal for real-time camera rotation and providing
smooth and accurate transformations.

C. GPU

1) Graphics Processing Units: Graphics Processing Units
are used to perform rapid and efficient computations required
for rendering complex graphics. Unlike the CPU that excel
in general-purpose tasks, GPUs are specifically optimized for
parallel processing of graphical computations.

2) OpenGL: We used OpenGL, which is a widely adopted
and platform-independent graphics API that provides a stan-
dardized framework for developing interactive 2D and 3D
applications. It offers a set of functions and commands for
rendering graphics, manipulating textures, handling user in-
puts, and communicating with GPUs in general.

3) GLSL: Shaders are programs where all of the GPU
logic is written, and we use GLSL language because of its
cross-platform support. OpenGL Shading Language (GLSL) is
a high-level language designed specifically for programming
shaders within the OpenGL framework. Shaders are small
programs that run on the GPU and handle different aspects
of the rendering pipeline, such as vertex transformations,
fragment shading, and geometry manipulation.

4) Problems: However, raytracing is a bit different from
what the general usage is designed for. When raytracing, we
skip the part where we use Vertex shader to map points to the
screen, which is an essential part for rasterization. After the
Vertex shader goes to the Fragment shader, where the coloring
happens. For each pixel inside of triangles, which came from
the Vertex shader, the Fragment shader is applied. It returns a
single color for the current pixel. However, when raytracing,
we need to trace rays from each pixel in our screen, so our
vertex shader accepts from the CPU only 2 triangles, which
cover the entire screen. This way, the fragment shader(where
all the calculations will happen) will be able to render the
whole scene(see fig. Screen triangles).

Fig. 11. Screen triangles.



5) Performance: After moving most of our code base to the
GPU the performance increased by approximately 100 times
with BVH disabled. We’ve tested the FPS boost with different
amounts of triangles and with BVH enabled and here are the
results:

Fig. 12. GPU vs CPU.

IV. VISUAL EFFECTS

A. Blur

Blur (focusing on particular distance,) is achieved by em-
ulating the behavior of a camera lens. By simulating the
effects of a lens with a certain radius, rays are emitted from a
randomly chosen point within that radius, and their direction
is altered to mimic the defocusing of light. This process
introduces randomness into the ray direction, resulting in a
blurred effect, focusing on objects.

Fig. 13. Blur example.

B. Anti-Aliasing

Aliasing is common in computer graphics that causes jagged
edges and visual artifacts, particularly when rendering di-
agonal lines or curved surfaces. We have implemented two
approaches to handle them:

• MSAA (Multiple Samples) – samples multiple points
within each pixel, calculating an average color value. It
gets the best results but is computationally expensive.

Fig. 14. Anti-aliasing effect.

• FXAA – (Fast Approximate) – analyzes the pixel color
values and their neighborhood to identify edges and
smooth out jagged edges. It reduces aliasing without
significant performance impact.

C. Post-processing

After rendering the scene, the resulting image is stored as
pixels in a texture object Having saved the computed pixel
color results in a texture, we can apply various effects to
render an image. GLSL shaders can then be used to perform
different functions on these pixels, such as applying a vignette
effect(darkening or fading effect towards the edges of an
image) or converting the colors. This approach allows flexible
post-processing workflows.

Fig. 15. Vignette effect on church image.

V. RESULTS

Combining most of the listed features above, we managed
to get pictures, shown in Fig. 16, 17, 18, 19.

VI. CONCLUSION

In conclusion, this project successfully implemented a ro-
bust rendering technique that accurately simulated the behavior
of light rays within a virtual environment. Additionally, we
incorporated advanced features such as materials, textures,
different types of lights for diverse effects, and visual effects
like blur and anti-aliasing. To harness the computational power
required for rendering, we utilized OpenGL to interface with
the GPU. Through the use of ray casting, shading algorithms,
and geometric calculations, the raytracer produced realistic



Fig. 16. Final image 1.

Fig. 17. Final image 2.

images with precise lighting and shadowing. The project
underscored the significance of computational efficiency in
handling complex scenes and materials, resulting in impressive
outcomes. Overall, the raytracer project offered a valuable
learning opportunity in computer graphics, fostering a deeper
understanding of the principles behind synthesizing realistic
images. The code of our project is available at the https:
//github.com/ucu-computer-science/RealtimeRaytracer.

Fig. 18. Final image 3.

Fig. 19. Final image 4.

REFERENCES

[1] Modelling a concurrent ray-tracing algorithm using object-oriented Petri-
Nets https://www.researchgate.net/publication/250650966 Modelling a
Concurrent Ray-Tracing Algorithm

[2] RayTracing in one weekend https://raytracing.github.io/books/
RayTracingInOneWeekend.html

[3] RayTracing the next week https://raytracing.github.io/books/
RayTracingTheNextWeek.html

[4] Raytracing:The Rest of Our Life https://raytracing.github.io/books/
RayTracingTheRestOfYourLife.html

[5] Fast Minimum Storage Ray.Triangle Intersection https://cadxfem.org/inf/
Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf

[6] Implementing a practical rendering system using GLSL https://cs.
uwaterloo.ca/∼thachisu/tdf2015.pdf

[7] 3D Rendering for Beginners https://www.scratchapixel.com/index.html

https://github.com/ucu-computer-science/RealtimeRaytracer
https://github.com/ucu-computer-science/RealtimeRaytracer
https://www.researchgate.net/publication/250650966_Modelling_a_Concurrent_Ray-Tracing_Algorithm
https://www.researchgate.net/publication/250650966_Modelling_a_Concurrent_Ray-Tracing_Algorithm
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://raytracing.github.io/books/RayTracingTheRestOfYourLife.html
https://raytracing.github.io/books/RayTracingTheRestOfYourLife.html
https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
https://cs.uwaterloo.ca/~thachisu/tdf2015.pdf
https://cs.uwaterloo.ca/~thachisu/tdf2015.pdf
https://www.scratchapixel.com/index.html

	Introduction
	What is Raytracing
	General algorithm overview
	Related Works

	Implementation Setup
	Used libraries
	Scene
	Objects
	Overview
	Graphical Object
	Matherial
	Texture

	Ray Intersection
	Ray
	Sphere Intersection
	Plane Intersection
	Ray-triangle Intersection

	Lights
	Model Loading

	Performaince improvements
	Bounding Volume Hierarchy
	Optmizations
	Precalculating Values
	Face Culling
	Rotation with quaternionis

	GPU
	Graphics Processing Units
	OpenGL
	GLSL
	Problems
	Performance


	Visual effects
	Blur
	Anti-Aliasing
	Post-processing

	Results
	Conclusion
	References

