
GUI Toolkit for Wayland
Academic project report for the Operating Systems course

Oleh Omelchuk
Ukrainian Catholic University

Computer Science
Lviv, Ukraine

oleh.omelchuk@ucu.edu.ua

Sviatoslav Lushnei
Ukrainian Catholic University

Computer Science
Lviv, Ukraine

sviatoslav.lushnei@ucu.edu.ua

Abstract—This document is a report on our implemented
GUI Toolkit for Wayland as a part of the academic project
in the Operating Sytems Fall-2023 Course at CS Program. It
will describe the main features of our toolkit, the way it works,
and the way it was implemented. Also, we will overview of the
Wayland protocol and Cairo library, which were used in our
project.

Index Terms—GUI Toolkit, Wayland, Cairo, window

I. INTRODUCTION

A. Graphical User Interface

Graphical User Interface (GUI) plays a pivotal role in
enhancing user interactions with computers, providing a visual
representation of applications, and facilitating user-friendly ex-
periences. Developing a GUI for Wayland involves embracing
its unique characteristics and principles, setting it apart from
other systems.

B. Wayland

Wayland is a communication protocol that serves as a
foundation for graphical compositors, allowing for the cre-
ation and manipulation of graphical elements on the display
server.[1] It emphasizes simplicity and efficiency by providing
a direct communication pathway between the application and
the display server. Wayland relies on two fundamental abstrac-
tions: listeners and interfaces. Listeners serve as receptors,
attentively awaiting events and updates from the server, while
interfaces function as the communication medium through
which applications engage with the display server.

C. Cairo

Cairo is a versatile 2D graphics library widely used for
rendering, creating visually appealing graphics, and support-
ing vector graphics, contributing to various applications and
toolkits. It brings seamless rendering and cross-platform com-
patibility. With robust support for vector graphics, it integrates
with Wayland protocols, requiring EGL surfaces for optimal
performance. Animation, extensibility, and customization con-
tribute to a visually compelling user interface.

II. IMPLEMENTATION STRUCTURE

A. Overview

In the course of our implementation, the initiation phase
involves the establishment of connections with display servers
and the configuration of listeners to accommodate user inputs.
Various surfaces, encompassing windows, buttons, and input
fields, are meticulously crafted to underpin the graphical user
interface. These surfaces engage in seamless communication
through strategically implemented callbacks, fostering an in-
terplay with the Wayland protocol.

The procedural sequence encompasses the systematic ini-
tialization of Wayland components, cursor management, inte-
gration of EGL for graphics rendering, and the incorporation
of Cairo to refine visual aesthetics. The toolkit operates
responsively, driven by events precipitated by user interactions,
particularly those associated with pointer events.

In wayland everything is a surface, every object is located
on sufrace, the window itself also is surface. In the Wayland
paradigm, the concept prevails that everything is a surface;
each object, including the window itself, is categorized as a
surface. Surfaces serve as the fundamental entities upon which
graphical objects reside and interact. Notably, these surfaces
are not homogenous; they may assume distinct roles, thereby
dictating their behavior and purpose within the graphical
framework.

B. Classes and Abstractions

In our design, the Wayland GUI Toolkit features a hierarchy
of abstractions: Window, Component, and SubComponent.
The Window class encapsulates top-level surfaces, manag-
ing initialization, resizing, and fullscreen functionality. The
Component class represents graphical elements and handles
drawing, resizing, and surface management.

Every component, whether a standalone Component, a Sub-
Component within a parent, or a top-level Window, possesses
its own surface. Subcomponents, in particular, assume the
role of subsurfaces. Subsequently, the SubComponent class
extends Component to enable hierarchy and other features. The
code emphasizes modularity and encapsulation, facilitating a
flexible and scalable GUI architecture within the Wayland
framework.

1) Component Abstraction: Every graphical element is en-
capsulated within the Component abstraction, each having its
own surface. This class manages surface creation, resizing, and
drawing operations. It is designed to be versatile, representing
a broad category of graphical entities within the GUI toolkit.

2) SubComponent Abstraction: Building upon the Com-
ponent abstraction, SubComponent introduces the concept of
hierarchy. Subcomponents are embedded within parent com-
ponents, offering features like anchored positioning, pivoting,
and resize propagation. This hierarchy allows for a structured
arrangement of graphical elements, facilitating more complex
and organized GUI layouts.

3) Window Abstraction: The Window abstraction encapsu-
lates top-level surfaces and incorporates a specialized XDG
top surface. This class handles surface initialization, resizing,
and fullscreen functionality. It orchestrates the creation of
additional components, forming the basis for the graphical user
interface.

Fig. 1. Class diagram.

C. Implemented Subcomponents

1) Button Class: The Button class encapsulates interactive
elements with a text label. It extends the SubComponent
and handles pointer events, invoking the OnClick action.
Users can create responsive buttons with a specified size and
text. The implementation includes text rendering and color
customization. This class is integral for constructing user-
friendly interfaces with interactive elements, facilitating user
engagement and interaction.

2) Text Class: The Text class facilitates the rendering and
display of textual content within the GUI. Extending SubCom-
ponent, it integrates seamlessly into the hierarchical structure.
Users can instantiate text elements with specific content, size,
and color, contributing to diverse visual presentations. The
class offers a dynamic setText method for modifying text
content, font size, and color. It is a crucial component for
conveying information and messages within the graphical user
interface.

3) InputField Class: The InputField class represents a text
input field within the GUI. Extending SubComponent, it
features a dynamic text display and responds to keyboard

input. Users can customize its appearance and access the
input text programmatically. Implementation includes handling
focus events and keyboard inputs and contributing to the
creation of forms and user input areas in the GUI.

D. Actions

The Action class serves as a versatile event-handling mech-
anism, allowing users to define and manage callbacks. With
support for multiple functions, it facilitates modular and exten-
sible code. Users can subscribe functions to events, enhancing
the decoupling of components in the GUI architecture. This
class is foundational for managing various user interactions
and events within the GUI toolkit.
t empla te <typename . . . Ts>
c l a s s Ac t i on
{

s t d : : v e c t o r<s t d : : f u n c t i o n<void (Ts ...)>> c a l l b a c k s {} ;

p u b l i c :
Ac t i on () = d e f a u l t ;
Ac t i on (s t d : : f u n c t i o n<void (Ts . . .) > f unc)
{

c a l l b a c k s . emplace back (func) ;
}

void operator +=(c o n s t s t d : : f u n c t i o n<void (Ts . . .) >& func)
{

c a l l b a c k s . emplace back (func) ;
}
void operator −=(c o n s t s t d : : f u n c t i o n<void (Ts . . .) >& func)
{

s t d : : e r a s e (c a l l b a c k s , func) ;
}

void operator +=(c o n s t A ct i on& a c t i o n)
{

c a l l b a c k s . emplace back ([& a c t i o n] { a c t i o n () ; }) ;
}

void operator () (Ts . . . a r g s) c o n s t
{

f o r (auto& func : c a l l b a c k s)
func (a r g s . . .) ;

}
} ;

III. FEATURES

A. Structural Features

1) Hierarchical Structure: Components have the surfaces,
and windows have XDG top surfaces. Subcomponents utilize
subsurfaces with parent-child relations, enabling a hierarchical
structure.

2) Dynamic Resizing: Components, including windows,
support dynamic resizing. Text and images dynamically adjust
to new sizes.

3) Image Support: Background Images: Components, in-
cluding buttons, support image backgrounds. Dynamic Scal-
ing: Images can dynamically scale based on component size,
preserving aspect ratios.

4) Input Handling: Handles input events such as mouse
clicks and keyboard input. Supports focus management for
input fields.

5) Callback System: Utilizes the Action template class for
managing and triggering callbacks. Supports flexible callback
registration and execution.

6) EGL Surfaces: Utilizes EGL surfaces for rendering
graphics. Drawing code example:
void Component : : draw ()
{

i f (! i s A c t i v e) re turn ;
i f (n e e d S u r f a c e R e s i z e)

f o r c e U p d a t e S u r f a c e s () ;

B. Window Featrues

1) Window Resizing and Moving: Resizable Windows:
Users can dynamically resize windows by dragging their edges
and adjusting both width and height. Window Movement:
Windows can be moved by clicking and dragging the title
bar, providing flexibility in window arrangement. Header with
Buttons:

2) Default Header: Each window includes a default header
containing buttons for minimizing, maximizing, and closing
the window. Button-Headed Windows: Specialized windows,
such as buttons, feature headers with additional buttons for
specific actions.

3) Button Click Events: Buttons respond to pointer events,
particularly the OnPointerDown event, allowing dynamic in-
teractions. Color Changes: Buttons can dynamically change
color, providing visual feedback to user actions. Window State
Control:

4) Minimize and Maximize: Windows support minimizing
and maximizing actions, enhancing user control over window
visibility. Close Operation: Users can close windows using
the provided close button, ensuring proper termination of
application components. Input Field Focus Handling:

5) Focused Input Fields: Input fields manage focus, with
visual indications when an input field is actively selected.
Keyboard Interaction: Users can input text into focused input
fields, with support for keyboard events such as key presses
and backspace.

6) Anchors: Our GUI toolkit for Wayland comes with a
handy resizing feature that makes adjusting window sizes a
breeze. We’ve added anchor points to the corners so you can
resize a window. It’s a simple and intuitive way to customize
window dimensions—horizontally, vertically, or both. This
feature offers flexibility and interactivity.
void SubComponent : : u p d a t e S u r f a c e P o s i t i o n () c o n s t
{

i f (! i s A c t i v e) re turn ;
auto p i v o t e d P o s = l o c a l P o s − p i v o t * s i z e ;
w l s u b s u r f a c e s e t p o s i t i o n (s u b s u r f , (i n t) p i v o t e d P o s . x ,

(i n t) p i v o t e d P o s . y) ;
}

auto c r = c a i r o c r e a t e (c S u r f) ;

i f (s c a l e I m a g e)
c a i r o s c a l e (cr , s i z e . x / imageS ize . x ,

s i z e . y / imageS ize . y) ;
c a i r o s e t s o u r c e s u r f a c e (cr , r S u r f , 0 , 0) ;
c a i r o p a t t e r n s e t f i l t e r (c a i r o g e t s o u r c e (c r) ,

CAIRO FILTER NEAREST) ;
c a i r o p a i n t (c r) ;

c a i r o g l s u r f a c e s w a p b u f f e r s (c S u r f) ;
c a i r o d e s t r o y (c r) ;
w l su r f ace co mm i t (s u r f) ;

}
void SubComponent : : r e s i z e R e c (glm : : vec2 p r e v C o n t a i n e r S i z e ,

glm : : vec2 n e w C o n t a i n e r S i z e)
{

glm : : vec2 f a c t o r = (n e w C o n t a i n e r S i z e − p r e v C o n t a i n e r S i z e) /
p r e v C o n t a i n e r S i z e * (anchorsMax − anchorsMin) ;

glm : : vec2 newSize = t a r g e t S i z e + t a r g e t S i z e * f a c t o r ;
r e s i z e (newSize) ;
t h i s −> l o c a l P o s = ancho redPos + g e t A n c h o r C e n t e r () ;

u p d a t e S u r f a c e P o s i t i o n () ;
}

7) Interactive cursor: Enhancing the user experience, our
implementation seamlessly integrates interactive cursor sup-
port when the cursor dynamically adapts to different elements.
Whether it’s resizing a window or interacting with buttons, the
cursor intuitively provides visual cues. This interactive cursor
support contributes to a fluid and immersive interaction with
the graphical elements.

IV. CONCLUSION

We have implemented a revolutionary GUI Toolkit for Way-
land, synthesizing the strengths of Wayland’s surface-centric
approach and the versatility of the Cairo library. The source
files can be found on our GitHub repository [2]. Inspired
by Wayland’s abstractions, we introduced our new ones, like
Window, Component, and SubComponent hierarchies. Our
toolkit provides a dynamic resizing feature with anchor-based
precision, as well as other features mentioned above.

Our toolkit provides a user-friendly and straightforward API
inspired by the Qt library. Detailed documentation is available
on the WikiPage [3], offering comprehensive descriptions of
the primary methods. For a practical demonstration, refer to
our presentation slides [4].

REFERENCES

[1] Wayland Guide Book: https://wayland-book.com/
[2] Project’s GitHub Page: https://github.com/qLate/GUIToolkit
[3] GUIToolkit Documentation page: https://github.com/qLate/GUIToolkit/

wiki
[4] Project Presentation slides: https://www.canva.com/design/

DAFywPpVq7s/TgLbIp470kEJa- T0Wrd2g/view?utm content=
DAFywPpVq7s&utm campaign=designshare&utm medium=link&
utm source=editor

