
CCTV Camera Software Customization
for Precise Frame Capture Time Retrieval

Serhii Matsyshyn
Faculty of Applied Sciences

Ukrainian Catholic University
Lviv, Ukraine

serhii.matsyshyn@ucu.edu.ua

Oleksii Mytnyk
Faculty of Applied Sciences

Ukrainian Catholic University
Lviv, Ukraine

oleksii.mytnyk@ucu.edu.ua

Tymur Krasnianskyi
Faculty of Applied Sciences

Ukrainian Catholic University
Lviv, Ukraine

tymur.krasnianskyi@ucu.edu.ua

Abstract—We present a series of steps that allow for the
injection of high-precision timestamps. Most CCTV cameras do
not provide an absolute timestamp of the frame, which is crucial
in solving real-time computer vision tasks. A common approach
for timestamp estimation is to subtract the average delay from
the frame retrieval time on the client’s side. However, the delay
accumulates from many stages of image processing and varies
substantially. Whereas our approach is to inject timestamps into
the video stream on the camera’s side. Our customized software
provides highly accurate results: the standard deviation of the
difference between predicted and actual frame capture time is
10ms. Furthermore, video stream delay decreased from 200ms
to 115ms on average.

I. INTRODUCTION

In the field of CCTV technology, a major issue is the lack
of precise timestamps in video streams. Most standard CCTV
cameras don’t include this feature, which is crucial for tasks
like real-time computer vision. This gap makes it difficult to
merge data from different sensors effectively. By default, the
cameras had large buffers: the delay increases over time; while
the camera is reloading, the CCTV system is not operational.
The picture sometimes had chaotic brightness spikes, affecting
the efficiency and accuracy of the computer vision solutions.
Also, since most camera software is closed-source, making
custom changes is challenging. Our paper presents a method
to upgrade CCTV cameras for accurate timestamping. We
analyze the camera hardware, set up a connection, install
OpenIPC OS, and then read images directly from the camera’s
sensor. Our key advancement is adding NTP-based timestamps
to the video stream, which can then be shared using protocols
like RTSP. This approach greatly enhances CCTV systems for
various real-time applications.

II. HARDWARE SETUP & OPENIPC INSTALLATION

This firmware can be used for various cameras, including,
but not limited to HiSilicon chips [1]. However, we provide the
specifications of the setup used in this research for simplicity
of reproduction:
Matrix: 1/2” Approx. 2.13M-Effective Pixel Color CMOS
Image Sensor IMX385
CPU: HikVision Hisilicon Hi3516D
108 MB RAM; 16 MB Storage
The installation of OpenIPC can be done via the UART

Fig. 1. Locate UART pins

protocol through the U-boot menu. U-boot is a section that,
in addition to daily loading and launching the kernel, can be
used by us to update the system over the network or MMC
(SD card) and to save backups of both the entire flash drive
with firmware and particular parts. To get to the U-boot menu,
you need to have a USB UART adapter, find inconspicuous
RX, TX contacts on the camera board, connect to them using
special clothespins or solder, and run a terminal program like
PuTTY for Windows, minicom for Linux or SerialTools for
MacOS (as shown on Figure 1). Once connected, you should
be able to Ctrl+C after replugging the camera to access U-boot
(as shown in Figure 2).
We recommend backing up the original firmware before pro-
ceeding with the installation of the OpenIPC OS. Follow the
OpenIPC provided installation instructions for various chipsets
[1].

III. MATRIX DRIVER MODIFICATION

While OpenIPC supports many combinations of processors
and camera matrices, in our case, support for an IMX385
matrix was not implemented by the developers.

Fig. 2. U-boot help

First of all, matrix configuration happens via I2C or SPI. In
order to be able to communicate correctly with the matrix, you
need to change the configuration of the pins by studying the
datasheet and setting the flags in the corresponding registers.

The next important part is the matrix setup driver. Usually, it
is built into the kernel or compiled into the streamer; however,
OpenIPC implemented a better approach – loading it as a
dynamic library. After debugging the camera from the original
firmware, it was found that the driver is compiled into the
kernel, and it is problematic to get it from there. Several
drivers in dynamic library format were also found on the
Internet, and the driver source code for a similar matrix. After
cross-compilation, as well as modifications, it was possible to
get a partial picture from the camera (with color problems).
However, attempts to compare the state of the ISP registers
and matrix registers with the original firmware did not give
any clues as to what the problem was.

One of the drivers found on the Internet had an i2c con-
nection error, however, according to a preliminary analysis
(decompilation with Ghidra software [6]), it was recognized
as theoretically suitable. After manually setting the registers
of the matrix, a correct and clear picture was obtained without
artifacts. Therefore, a patch was implemented in the form of
our own dynamic library and its loading using LD PRELOAD.
In this way, it was possible to implement the correct commu-
nication of this driver via i2c with the camera matrix.

Another important part of this driver is the ISP (image
signal processor) settings and setup for correct operation
with the camera. It was this part that caused artifacts in the
image, and it was correct in the found driver. The settings

are very voluminous and detailed, and any inconsistency with
the matrix datasheet has an extremely negative effect on the
operation of the ISP system and the resulting stream.

IV. CUSTOM STREAMER

Default streamer OpenIPC Majestic [9] – has a closed
source code, that’s why it was not possible to use it to
customize its code for the timestamp addition.

However, OpenIPC has several poorly supported open-
source streamers, including OpenIPC Mini Streamer [7] and
OpenIPC SmolRtsp [8]. OpenIPC Mini Streamer is only
supported for the latest processors, and OpenIPC SmolRtsp
has no bindings and ISP/VI setup, i.e., it implements purely
frame transfer. That’s why Mini didn’t work out of the box
on our camera due to a mismatch of HISI OSDRV – a set
of system internals, ISP system, and camera streaming tools
built into the kernel – and the actual streamer realization.

A long way of modifying and setting up the streamers
to work correctly with the internal streaming system and
h264 encoding was covered. As a result, a hybrid streamer
of the two above-mentioned streamers was obtained, which
worked stably and did not have the problems of the original
firmware streamer – correct and maximally small buffers were
implemented, and the time from receiving the encoded frame
from within the system to its actual sending to clients was
minimized.

Several ISP optimization setups have been made to mini-
mize latency within the ISP.

V. TIMESTAMPS

The most popular approach for absolute timestamping in the
RTSP video stream is to send RTCP SR packets, which contain
the mapping between relative RTP timestamps and absolute
NTP timestamps [3]. However, the RTCP protocol is not
implemented by smolrtsp or mini streamer at all. Therefore,
two other modern approaches are used in our custom streamer.
The first one embeds a timestamp into each frame using a SEI
NALU [2] within the H264 encoder. The second embeds a 64-
bit NTP-format timestamp into RTP packets.

A. H264-based timestamping

H264-based timestamping ensures that the first timestamp
is embedded in each frame at the earliest stage of the pipeline.
This is done by injecting it into each frame using a SEI
NALU [2]. Furthermore, the second timestamp is appended
when transferring frames from the internal OS buffer to the
streamer’s buffer and is later used to reduce the synchroniza-
tion error in cases where processing is delayed.

B. RTP data packets

The second method of timestamp injection involves using
64-bit NTP Header Extension [4] that was proposed in Novem-
ber 2010 and yet was implemented by GStreamer only in the
recent 1.22 version. The structure of an RTP packet with this
extension (See Figure 5) stores the NTP timestamp as a 64-
bit value where the higher 32-bit part represents the number

Fig. 3. Streamer’s architecture

Fig. 4. ISP Finite State Machine

of seconds, and the lower 32-bit part represents the fraction.
The injected timestamp is calculated as the average of the first
H264-based timestamp and the second H264-based timestamp.

C. Timestamp retrieval on the client side

The GStreamer pipeline is used for image retrieval. As
mentioned earlier, in the recent 1.22 version of GStreamer,
the rtspsrc element is able to automatically add GstReference-
TimestampMeta [5] to the frame buffer if the received RTP
packet has a 64-bit NTP extension. In fact, that is the only
extension that GStreamer handles directly. At the end of the
GStreamer pipeline, the processed frame buffer is pulled from
the appsink element and is later displayed on the screen with
timestamp overlay, which is stored in the buffer metadata.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|1| CC |M| PT | sequence number |
+-+R
| timestamp |T
+-+P
| synchronisation source (SSRC) identifier |
+=+
| 0xBE | 0xDE | length=3 |
+-+E
| ID-A | L=7 | NTP timestamp format - Seconds (bit 0-23) |x
+-+t
|NTP Sec.(24-31)| NTP timestamp format - Fraction (bit 0-23) |n
+-+
|NTP Frc.(24-31)| 0 (pad) | 0 (pad) | 0 (pad) |
+=+
| payload data |
| |
+-+

Fig. 5. RTP packet with 64-Bit NTP Header Extension

VI. DEBUGGING TOOLS

Utilize the ipctool [1] for direct camera configuration and
testing. If the matrix is not detected on the i2c interfaces,
investigate the hardware connections. Going further, install
ipctool on a default camera firmware to copy the registers.
During debugging, you need to have processor registers in
front of you, camera registers available via i2c, and a full proc
dump of the original camera in different operation modes.

For drivers, packages debugging (in particular, to debug
and extract useful setup features for ISP of the closed source
majestic streamer), the following tools can be used: Ghidra
[6], cross-compiled gdb for the camera as a server, patching
using LD PRELOAD.

Since the amount of permanent memory on the camera is
very small, and all programs are minimized and simplified, it
is easy to extract useful information at the assembler level.

VII. RESULTS

We successfully eliminated the need for periodic camera
reloads by optimizing buffer management, thereby reducing
delays and ensuring continuous operation. Additionally, we
resolved the issue of random white flashes in the video feed,
leading to a more stable and reliable image output. The table
I illustrates the enhanced synchronization precision achieved
with our solution compared to the initial firmware. The average
delay time significantly decreased from 200 milliseconds in the
initial firmware to 115 milliseconds in our solution. Further-
more, the error metric shows a marked improvement. While
the initial firmware exhibited a cumulative error, our solution
achieved a mean error of 0 milliseconds with a standard
deviation of 10 milliseconds.

TABLE I
COMPARISON OF SYNCHRONISATION PRECISION

Firmware Version Average Delay Time (ms) Error (ms)
Initial Firmware 200 Cumulative Error

Our Solution 115 mean=0ms, std=10ms

VIII. FUTURE WORK

We plan to delve into the potential of accessing and
modifying the camera’s kernel code. This advanced level of
customization would enable precise control over the times-
tamping process. Specifically, we aim to implement ”same
frame” timestamp injections, ensuring each frame carries a
timestamp that accurately reflects the moment of its capture.
This approach promises to provide the best accuracy utilizing
all the potential NTP clocks can provide.

REFERENCES

[1] “OpenIPC: supported chips and installation manual” https://openipc.org/
supported-hardware/featured

[2] “H.264 : Advanced video coding for generic audiovisual services”, https:
//www.itu.int/rec/T-REC-H.264-202108-I/en

[3] “RTP: A Transport Protocol for Real-Time Applications”, https://
datatracker.ietf.org/doc/html/rfc3550#section-6.4.1

[4] “Rapid Synchronisation of RTP Flows”, https://datatracker.ietf.org/doc/
html/rfc6051

[5] “GStreamer rtspsrc documentation”, https://gstreamer.freedesktop.
org/documentation/rtsp/rtspsrc.html?gi-language=c#rtspsrc:
add-reference-timestamp-meta

[6] “Ghidra Software” https://github.com/NationalSecurityAgency/ghidra
[7] “Mini Streamer” https://github.com/OpenIPC/mini
[8] “Smolrtsp Streamer” https://github.com/OpenIPC/smolrtsp
[9] “Majestic Streamer” https://github.com/OpenIPC/majestic

https://openipc.org/supported-hardware/featured
https://openipc.org/supported-hardware/featured
https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://datatracker.ietf.org/doc/html/rfc3550#section-6.4.1
https://datatracker.ietf.org/doc/html/rfc3550#section-6.4.1
https://datatracker.ietf.org/doc/html/rfc6051
https://datatracker.ietf.org/doc/html/rfc6051
https://gstreamer.freedesktop.org/documentation/rtsp/rtspsrc.html?gi-language=c#rtspsrc:add-reference-timestamp-meta
https://gstreamer.freedesktop.org/documentation/rtsp/rtspsrc.html?gi-language=c#rtspsrc:add-reference-timestamp-meta
https://gstreamer.freedesktop.org/documentation/rtsp/rtspsrc.html?gi-language=c#rtspsrc:add-reference-timestamp-meta
https://github.com/NationalSecurityAgency/ghidra
https://github.com/OpenIPC/mini
https://github.com/OpenIPC/smolrtsp
https://github.com/OpenIPC/majestic

	Introduction
	Hardware Setup & OpenIPC Installation
	Matrix driver modification
	Custom streamer
	Timestamps
	H264-based timestamping
	RTP data packets
	Timestamp retrieval on the client side

	Debugging Tools
	Results
	Future Work
	References

