Building and Measuring the Efficiency of a
Distributed Parallel Web Crawler

Teodor Muzychuk®, Roman Mutel*, Bohdan Ruban*, Mykhailo Bondarenko*
* Faculty of Applied Sciences of Ukrainian Catholic University, Lviv, Ukraine

Abstract—World Wide Web is one of the biggest sources of data
in the modern world. Due to its size, in the last 30 years, there
exists a challenge to effectively traverse and index the web pages
it contains. Google Search is one of the well-known leaders in the
industry because of its complex experience in the topic and huge
computational power. However, less advanced systems are also
worth the attention of developers and researchers. In this paper,
we present our solution to the task of web crawling, describe the
existing tradeoffs and problems we encountered, and analyze the
efficiency of the parallel distributed system we developed.

I. INTRODUCTION

A web crawler, also called a web spider or a spiderbot, is
a computer program that visits websites, parses their HTML
code to extract features such as page title, headers, links,
and plain text, and continues crawling based on the links
found on previous pages. The initial set of pages to start
the crawling with is called a seed. The use case of a web
crawler limits to the imagination of the developers: they are
used to gather big amounts of data from domain-specific
sites, generate recommendations in search engines, check for
updates, test web service integrity, etc.

Crawling the web is a hard and composite task because
of the inconsistency of the pages, tradeoffs between quality,
quantity, and freshness of crawled pages, repetitive crawling
(i.e., visiting the same page more than once), and crawler
scalability. It is also worth noting that it is an embarrassingly
parallel task. These two factors make the development of web
crawlers perfect for educational, research, and interviewing
purposes [1], [2].

II. DISTRIBUTED SYSTEM ARCHITECTURE

The so-called microservice architecture (Fig. 1) is composed
of nodes serving various functions. The entire architecture,
except for the front-end, has been implemented in C++. All
communication between individual nodes is performed using
HTTP requests, facilitated by the cpr library [3]. The code for
all parts, as well as instructions for compiling and running
each of them, can be found in our GitHub repository [4].
Specifically, regarding the nodes related to crawling, we define
three node types:

o« Main Node (Task Manager): This node is respon-
sible for managing the queue of links to be crawled
and distributing those among other nodes. Typically, we
would only have one Task Manager; however, in certain
environments, it might be beneficial to use an architecture
comprised of many clusters of nodes, each containing its

Return k Links from Parsed Page:
/pages/add/

Task Managej(*

Ask for n Links
/pages/get/<n>|

Insert Parsed Pages|

Database

Get Best Matching Pages
/search?prompt=<user-prompt>|

v—|Return Best Resultj—z)
<
Get Pages Matching the Promp!A

User

Searcher

Fig. 1. Microservice architecture

own Task Manager. In our case, we implemented the Task
Manager with a RESTful API using the Crow library
[5], which allows us to easily create a multithreaded
asynchronous server.

o Crawler/Parser: This is the elementary building block
of our system. Its purpose is to query the Task Manager
for a list of links to be parsed and then parse them.
Parsing involves fetching the HTML code of the web
page and retrieving relevant information from it. We
extract headings, titles, and links. Next, we save this data
into our database and send the links back to the Task
Manager. Fetching is an embarrassingly parallel task.
Thus, we use the parallel pipeline tool from the Intel
oneAPI Threading Building Blocks library [6], which
allows us to quickly and efficiently parallelize the crawler
by creating a pipeline that receives links, produces parsed
web pages, and sends them to the database.

o Database: The database is the main data pool where
all the indexed pages are stored. It is shared among all
the other nodes but can be sharded (distributed) for load

balancing. We use MongoDB, which has full-text search
capabilities out of the box, allowing for an easy searcher
implementation. In the database, we only store the links,
title, and headings of each web page to conserve storage.
These are sufficient for a rudimentary search engine since
the rest of the text usually repeats keywords mentioned
in the headings or title.

There are also extra nodes unrelated to the crawling archi-
tecture, mostly used for user interaction:

o Searcher: This node is responsible for implementing a
search API in the database. It accepts a request with a
query and returns a list of search results. These results
can then be displayed to the user or processed in some
way by any front-end. We implemented this node using
the Crow library.

o Front-end: This node provides the part visible to the
user, including a simple UI with a search field and a list
of results. It queries the searcher back-end and displays
the results to the user.

Classically, the CAP theorem [7] is mentioned when de-
signing and evaluating distributed systems. It states that any
system cannot be consistent, available, and partition-tolerant
simultaneously; only two of these guarantees can hold. In our
design, certain hazards must be considered.

The first is consistency. The data between nodes must
be consistent across the whole system. We achieve this by
isolating most of the nodes from the Task Manager. The Task
Manager operates independently of the status of the database,
the number, and status of the crawlers, or the searcher. It is the
crawlers’ responsibility to request tasks from the Manager and
complete them independently. Thus, the failure of the network
between the crawlers and the Task Manager does not stop the
entire system, providing resistance to partitioning. However,
it will affect the data in transfer at the moment, as it is not
duplicated in any buffers. In the case of millions of links, a
few lost links are of small significance and can be traded for
faster communication time between the services.

The real threat to the system’s performance is the absence or
sudden failure of the Task Manager. In such cases, nothing can
continue the work. Thus, our Task Manager implementation
can save its state upon crashing or at least return to a previous
state.

III. TASK MANAGER HEURISTICS

How exactly to distribute links among the crawlers ex-
pecting them is a difficult design question. It is logical that
one should have a queue of links to be processed, which is
mentioned by the majority of articles on web crawlers [2],
[8]. However, the approach of a single global queue has a
few flaws: namely, in practice, the queue tends to get filled
up with links from the same domain since domains mostly
reference themselves. In the long run, this means that we can
exponentially dedicate more and more time to crawling the
same exact domain, which is bad both for the heterogeneity
of information and the performance of the whole system in

case we get rate-limited. An exact description or solution
of how this should be handled is out of the scope of the
traditional papers on crawlers. That leaves the experimentation
to ourselves. We settled on a single queue dedicated to each
domain and a “master queue” of domain names. In there,
we can prioritize them such that the crawling process is
distributed evenly among the number of domains that are
currently known. This accomplishes a few things: firstly, it
somewhat ensures that we don’t violate each domain’s access
policy: most domains have a robots.txt file that defines
how automated web indexers should access the site. In case of
violation, a rate limiter kicks in, preventing us from crawling
the site. To avoid this, we ensure not to return more than 32
links from each domain to each crawler and try to provide each
of them with different domains altogether. The prioritization
of domains depends on two factors: the “priority” - more
important, determined algorithmically by us, and the time of its
entry into the queue - older domains that have been “waiting”
for longer should be processed first. The “priority” of domains
gets sorted out as follows. Upon entry into the queue, each of
them gets priority 0. When a set of links from a particular
domain is sent to a crawler, the priority of that domain rises -
it is moved further down the queue. If its supply of links has
been exhausted, it gets moved down even further in order not
to impede other domains. This allows to distribute the crawling
across, whilst accounting for the possibility of blockage and/or
starvation.

IV. EFFICIENCY MEASUREMENT

The measurement of efficiency was posed as one of the main
tasks in this project. However, it is a non-trivial problem. The
system is heterogeneous, and its components know little about
each other. It is not difficult to measure a single web crawler’s
performance, however, it gives us very little data within the
context of the whole system; depending on exactly what sort
of work was given to the crawler, we may experience a very
large deviation in its performance - sites can vary in size, in
the time needed to access them, and in the number of pages
per domain. Therefore, we need to gauge the performance at
a global level.

Another possible solution is doing so at the Task Manager
node: we can look at the size of its queue, or the set of
all visited links, and see how it grows over time. This is
okay, but also has its own caveats: the queue is hardly a
good measurement since it is guaranteed to grow exponentially
almost no matter what. The “visited” set is okay; however, the
presence of a link in it does not guarantee that it was actually
parsed. Due to the specifics of our architecture, in order to
achieve isolation between crawlers and the task manager, all
the invalid links or those that could not be parsed still end up
in the “visited” set.

Therefore, the only solution to our problem is querying the
database for the number of links periodically and seeing how
many pages have been added to it. The optimal sampling rate
for this is determined experimentally. We had three runs on
the fixed seed of 600 links, dumped by the task manager. First

run was with the sampling period of 2 seconds (3), second
run had the sampling period of 5 seconds with the hope that
it will smoothen the data (4. The third one had a period of 5
seconds, but it was run on the shuffled seed data, instead of
ordered. The third one has the smallest standard deviation and
is depicted below (95).

Parsed Pages Per Amount of Time

Average Amount of Pages Parsed per Step

a0

8
Number of 2-threaded Crawlers

Fig. 2. Measured throughput of various amounts of two-threaded crawlers,
5-second sampling window, shuffled seed file

Even though the overall trend is seen on all three plots,
the main problem of the high standard deviation remains.
The results vary greatly based on the input data and network
performance. Experiments have been held to determine the
optimal starting conditions and sampling rate for our setup.

The results are as follows: measuring (5) the number of links
parsed by a crawler per measure of time running on the same
machine as the Task Manager, we get that 32 threads have
the highest average throughput, with the standard deviation
growing very quickly with the number of crawlers. This is to
be expected, as with the growing number of parsed links, the
number of those that cause unexpected delays grows as well.
We can also see that the parallelization efficiency coefficient,
defined as E(s) = :7(,2) (where T'(s) is the pages throughput
of a system with s crawlers) (6) declines rapidly as the number
of crawlers grows.

V. CONCLUSION

Web crawling can seem trivial at first glance. Nothing seems
to be simpler than just “clicking” on links recursively and
logging the results. In practice, though, doing so efficiently
brings a lot of fundamental system design questions and leaves
one with many caveats and considerations. Even gauging a
system’s performance is a non-trivial task and requires a lot of
experimentation to get right - and even after that, the results are
highly volatile (7). Even parsing a single site is a problem that
is being tackled over and over by developers around the world,
as the web gets more and more complicated. To conclude,
a lot of credit has to be given to the designers of world-
renowned search engines such as Google. Their breakthrough
nature becomes apparent as soon as one tries to tackle a similar
problem at the same scale.

(1]

(2]

(3]
(4]
(51
[6

[t}

[7

—

(8]

REFERENCES

Educative, Inc., “Grokking modern system design interview
for engineers & managers,” last accessed 1 June 2023.
[Online]. Available: https://www.educative.io/courses/grokking-modern-
system-design-interview-for-engineers-managers/7XxnzJxOXOr
SystemDesign, “System design interview: Web crawler,” 2021.
[Online]. Available: https://medium.com/double-pointer/top-5-videos-for-
web-crawler-system-design-interview-75b7ac9c04ce

Open Source Community, “libcpr: C++ requests,” 2020. [Online].
Available: https://github.com/libcpr/cpr

R. M. T. Muzychuk, “Nyshporka web crawler,” 2023. [Online].
Available: https://github.com/rwmutel/nyshporka

Open Source Community, 2021. [Online]. Available:
https://crowcpp.org/master/

Intel, “Intel oneapi threading building blocks: Scalable
parallel programming at your fingertips.” [Online]. Available:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
NewsVolume 33Issue 2, 2002.

N. El-Ramly, H. Harb, M. Amin, and A. Tolba, “More effective, efficient,
and scalable web crawler system architecture,” International Conference

on Electrical, Electronic and Computer Engineering, 2004. ICEEC 04,
2004.

Parsed Pages Per Amount of Time

[|
40 -
9]
& 30 4 |
@
o
el
[}
o
©
o
(%]
g [|
&
& 20
o
2
c
3
o
€
<
Q
()]
©
[
Z 101
| |
| |
0.
[|
1 2 4 8 16

Number of 2-threaded Crawlers

Fig. 3. Measured throughput of various amounts of two-threaded crawlers,
2-second sampling window, “raw” seed file

Parsed Pages Per Amount of Time

120 1

100 A

80 1

60 1

40 A

Average Amount of Pages Parsed per Step

20 A ']

Ll § .

2 4 8
Number of 2-threaded Crawlers

Fig. 4. Measured throughput of various amounts of two-threaded crawlers,
5-second sampling window, “raw” seed file

16

Parsed Pages Per Amount of Time

120 1

100 A

80 1

60 1

40 A

Average Amount of Pages Parsed per Step

20 1

8
Number of 2-threaded Crawlers

4
N A
IS

Fig. 5. Measured throughput of various amounts of two-threaded crawlers,
5-second sampling window, shuffled seed file

16

Efficiency Coefficient

1.0

0.91

0.8 1

0.7 1

0.6 1

0.5 A

Efficiency Compared to Single Threaded Variant

0.4

0.3 1

1 2 4 8
Number of 2-threaded Crawlers

Fig. 6. Parallelization efficiency coefficient relative to the number of crawlers,
5-second sampling window, shuffled seed file

16

Pages parsed per single step

120 A

100 A

80 1

60 1

40 1

Pages parsed per single step (pages)

20 1

0 T T T T
2 4 6 8

Step (5)

Fig. 7. Pages parsed per single sampling period, 8 two-threaded crawlers,
5-second sampling window, shuffled seed file

