MYDOCKER: Implementation of Containerization
Using Linux Kernel Features

Ostap Seryvko*, Sofiia Folvarochna*, Olesia Omelchuk®, Anastasiia Beheni*, Hermann Yavorskyi*
* Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine
{ostap.seryvko, sofiia.folvarochna, olesia.omelchuk, anastasiia.beheni, yavorskyi}Qucu.edu.ua

Abstract—This project demonstrates the implementation of the
Docker analogue using Linux kernel features.

For more details, see: https://github.com/rednlnja/mydocker

Index Terms—Docker - containers - containerization - cgroups
- namespaces - Linux

I. INTRODUCTION

Docker is software that enables the isolated execution of
processes within containers. As a paradigm, containerization
encapsulates applications and their dependencies within iso-
lated environments. It resolves the challenge of constraining
processes in resources and accelerates the deployment of the
required environment for a program, enhancing its portability
across different machines.

The advantages of this approach are evident. The previously
mentioned portability to other machines increases convenience
and accelerates development speed. Additionally, departing
from portability, containers offer greater control possibilities
by allowing resource limitations to be defined. They also en-
sure isolation from other processes on the machine, preventing
conflicts. Another advantage is that containers are lighter than
virtual machines.

According to the latest data, Docker has over 15 million [/1]]
users.

This paper delves into implementing this Docker-like con-
tainerization concept, leveraging features within the Linux
kernel features.

II. DOCKER OVERVIEW

Docker is a platform for developing, shipping and running
applications in containers.

e Docker Engine is responsible for building and running
containers. It consists of a daemon process (dockerd) and
a Command Line Interface (CLI) for interacting with the
daemon.

o Images are the blueprints for containers. They contain
everything needed to run an application, including the
code, runtime, libraries, and dependencies.

o Containers are running instances of Docker images.

o Dockerfile is a script that defines the steps to build a
Docker image. It specifies the base image, sets up the
environment, and includes any necessary configurations.

o Registry is a repository for Docker images, allowing
users to share and distribute their images.

III. USED LINUX KERNEL FEATURES

Linux kernel contains various features used for memory
management, filesystem handling, process supervision, device
driver management, and networking support.

For implementing Mydocker we used the following Linux
kernel attributes:

A. Namespaces

Namespaces [2] envelop a global system resource in a way
that creates the illusion that processes within the namespace
possess their own independent instance of the global resource.
Other processes within the namespace can observe changes to
the global resource while remaining isolated from processes
outside the namespace. There are many different namespaces,
which correspond to different crucial resources: IPC, filesys-
tem, network and others.

Most namespaces when they’re ’unshared’ from global
recource, possess an illusion of full resource capacity. For
example, an process which is unshared in the PID namespace,
considers itself of a process with PID 1, however, it will have
other PID in the global process tree. But not all namespaces
behave simirally. Opposite to latter, mount namespaces, which
are the most important part of containarization process in
terms of isolation of resources, don’t create a ’clean’ copy
of mount points, as it is impossible to not have any mount
points. Therefore, when a mount namespace is created, a copy
of mount history is initialized, which in fact, can be easily
changed after, which will not affect global mount history.

In order to create an isolated filesystem, a following algo-
rithm is considered:

o Create an unshared process in the mount namespace using

clone(2).

o Create a mountpoint for a root, which will be hidden from
the global mount history and will contain the new root
filesystem of the container.

o Use chroot(2) or pivot_root(2) system calls to change the
root.

¢ Run the executable, which must be inside the new root
filesystem, as the old one is inaccesible.

B. Cgroups

Cgroups [3] is short for control groups. It’s a mechanism
that allows processes to be organized into hierarchical groups
that can use different types of resources. These resources can
be monitored and controlled for each such group. Cgroups


https://github.com/redn1nja/mydocker

also allow prioritizing groups in resource allocation. Interface
to cgroups is provided through a pseudo-filesystem called
cgroupfs.

Mydocker can limit its containers in memory, number of
processes and CPU share — the most crucial recourses.

C. Volumes/Bind Mounts

Despite of having an isolated filesystem using mount names-
paces, it may be helpful to access the data outside of the
container. Docker uses two different ways of achieving this,
called volumes and bind mounts, respectively. In fact, volumes
are improved version of bind mounts and bind mounts can
be done using mount(2) system call, with the MS_BIND flag.
Mydocker allows to create bind mounts, which should be listed
in the “mount_points” category of mydockerfile.

IV. IMPLEMENTATION DETAILS

DOCKER_CLI

~connect() / local or
remote

-execute()

Communujcation
Listener

-Connect(container)

_ MY_DOCKER
-Listen() -

-create (binary)

-start (container)
-list_containers ()

Attaches

Write()

HELLO WORLD/SHELL
(Binary) -> image

-kill_container (container)

R
uns on -listen(container)

[ -detach()

MYCONTAINER

Manages
Communicat

-- cgroups

namespace Creates

'‘Own FS' - chroot

IPC for listening -
pipe/socket (?)

VOLUME

Use volumes RIW/RW

create()

mount()
isMounted

unmount()

Fig. 1. UML diagram of our classes

A. Mydocker Daemon

Daemon is the main executable of the project, which does
all the housekeeping job. It is organized as a network server,
which can be connected by a client using sockets. The main

data structure of the daemon is the MyDocker class, which
contains, most importantly, the list of MyDockerContainers,
which will be discussed later. Daemon accepts commands
from the network socket and executes them with respect to
arguments provided in the command.

B. Mydocker container

Containers are basically isolated applications. To create a
container it is required to setup all parameters that provide
containerization, e.g. namespaces and control groups and then
run application. Then to have control of a container, it may
be useful to store the data about the process and utilize using
the client CLL

C. Mydockerfile

Dockerfiles are rulesets which allow to control the flow of
container creation. It is a configuration file, which provides the
information of a future container such as: application name,
mounts, resource limitations.

Listing 1. Mydockerfile example

"binll "/bin/sh",
"args" (1,
"mount_points"
"mem_limit": 200,
"pids_limit": 20

[ll/tmpll] ,

D. Mydocker CLI

CLI is a convenient way of controlling the flow of a daemon
and containers. In synergy with MyDocker daemon, it is a tool,
which allows to create, destroy, run and manipulate containers,
including the possibility to attach the output (and input, if
needed) of container to CLI’s I/O.

V. CHALLENGES AND OBSTACLES

The main challenge of the whole project was to isolate
containers as much as possible and, at the same time, leave
the opportunity for convenient communication with the “outer
world” (mounts and sockets played the biggest role here).

VI. CONCLUSIONS

However, Mydocker’s functionality is far from the original
Docker; it has accomplished an important didactic role.

REFERENCES
[1] S. Johnston, “Celebrating our second fiscal year,”
Feb 2022. [Online]. Available: https://www.docker.com/blog/

celebrating-our-second-fiscal-year/

[2] Namespaces Manual Page, Linux Documentation Project, Available at
https://man7.org/linux/man-pages/man7/namespaces.7.html,

[3] Cgroups Manual Page, Linux Documentation Project, Available at https:
//man7.org/linux/man-pages/man7/cgroups.7.html.


https://www.docker.com/blog/celebrating-our-second-fiscal-year/
https://www.docker.com/blog/celebrating-our-second-fiscal-year/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html

	Introduction
	Docker Overview
	Used Linux Kernel Features
	Namespaces
	Cgroups
	Volumes/Bind Mounts

	Implementation Details
	Mydocker Daemon
	Mydocker container
	Mydockerfile
	Mydocker CLI

	Challenges and Obstacles
	Conclusions
	References

