
Parallel genetic algorithms library
The library gives an interface to solve Traveling Salesman Problem via genetic algorithms

1st Dmytro Shumskyi
Applied Science Faculty

Ukrainian Catholic University
Lviv, Ukraine

shumskyi.pn@ucu.edu.ua

2nd Marta Samoilenko
Applied Science Faculty

Ukrainian Catholic University
Lviv, Ukraine

samoilenko.pn@ucu.edu.ua

3rd Victor-Mykola Muryn
Applied Science Faculty

Ukrainian Catholic University
Lviv, Ukraine

muryn.pn@ucu.edu.ua

4th Yurii Sahaidak
Applied Science Faculty

Ukrainian Catholic University
Lviv, Ukraine

sahaidak.pn@ucu.edu.ua

5th Roman Milischuk - Mentor
FoxFour CTO
King’s College

London, United Kingdom
roman@foxfour.ai

Abstract—There are plenty of NP-complete algorithms, which
require a lot of time to be solved. The genetic algorithms allow
us to reach great results with significantly lower complexity. The
project’s main topic is the development of different techniques
for genetic algorithms and comparing them with each other. The
Traveling Salesman Problem (later TSP) is an NP-hard problem.
The most popular exact algorithm - Held-Karp algorithm has
complexity O(n22n).

Index Terms—genetic algorithms, traveling salesman problem,
combinatorial optimization

I. INTRODUCTION

A. Genetic Algorithms overview
The genetic algorithms use the natural selection principle

to optimize selection tasks. The principle relies on three main
processes: crossover, mutation, and selection. The genetic
algorithms manipulate populations of possible solutions. Via
modifications of existing individuals and selecting the best
ones, the algorithm obtains pretty accurate results, conducting
significantly fewer operations than exact algorithms.

B. Traveling Salesman Problem
The TSP is a problem related to searching for cycles through

each graph vertex exactly once with the smallest weight.
As long as the problem belongs to the NP-hard class, the
solution’s complexity increases faster than any polynomial but
still slower than O(n!). The problem appears in many spheres:
logistics, astronomy, DNA sequencing, etc. Thus, a need for
a fast but not exact solution arises.

C. Held-Karp algorithm
The Held-Karp algorithm is one of the most popular TSP

solutions. Its complexity is O(n22n), which is much better
than the complexity of brute force O(n!). Still, the Held-Karp
algorithm uses more memory O(n2n) to solve the problem.
It stores only data about the shortest paths from start to point
through a set of points. This leads to skipping unnecessary
operations but still getting exact results. Thus, the algorithm
will be used as a genetic algorithm’s results reference value.

II. GENETIC ALGORITHMS IN DETAIL

A. Population

The population is a set of individuals representing the prob-
lem’s solution. In the case of TSP, it is a set of permutations
of vertexes that describe the order of vertexes in the cycle.
The first population is randomly generated, while each other
is based on the best individuals of the previous one.

B. Crossover

The crossover is the process of mutation in a genetic
algorithm. Two randomly chosen individuals exchange parts of
their genes, in the exact case, parts of vertex permutations. The
crossover can be conducted in different ways. We will consider
only crossovers that work with permutations of the same sets
and are applicable to TSL problem. For instance, the Order
crossover takes part from the first individual and sets it to
the permutation of the other one. Then it fills empty positions
with elements from the set in the same order as in the second
individual. The Partially mapped crossover randomly takes
elements from the first individual. Then it looks at elements of
the second individual, position of which are now occupied, and
sets them to positions of elements that occupied the position.
All the other elements are copied from the second individual’s
permutation. The library has 2 built-in crossover algorithms:
Order crossover (default; in the library, it is called a simple
crossover) and Uniform crossover.

1) Default crossover (Order crossover): The default
crossover algorithm is the Order crossover. It selects a random
subset of the first parent and copies it to the child. Then, it fills
the child with the elements from the second parent in the order
they appear in the second parent. The remaining elements are
copied from the second parent in the order they appear in the
first parent.

2) Uniform crossover: The Uniform crossover selects a
random subset of the first parent and copies it to the child.
Then, it fills the child with the elements from the second parent



in the order they appear in the second parent. The remaining
elements are copied from the second parent in the order they
appear in the first parent.

C. Mutation

The mutation is a process of random change in some per-
mutations. While crossover is a binary function, the mutation
is unary. As a crossover, a mutation can be made in different
ways. For instance, Rotation to the right selects a subset of
the permutation and rotates all elements in it by some value.
Inversion as a Rotation selects a subset, but instead of shifting
elements, it inverses their order.

The library has 3 built-in mutation algorithms: Swap mu-
tation (default; in the library, it is called a simple mutation),
Inversion mutation and Rotation mutation.

1) Default mutation (Swap mutation): The default muta-
tion algorithm is the Swap mutation. It selects two random
elements of the permutation and swaps them.

2) Inversion mutation: The Inversion mutation selects a
random subset of the permutation and inverts the order of
elements in it.

3) Rotation mutation: The Rotation mutation selects a
random subset of the permutation and rotates all elements in
it by some value.

D. Selection

The selection process determines the best individuals for the
next generation. The individuals should not be the best ones
to avoid local minimums. Thus, the selection takes the best of
some individuals several times.

The library now has 4 built-in selection algorithms: Tour-
nament selection (default; in the library, it is called a simple
selection), Rank selection, Boltzmann selection, and Propor-
tional selection.

1) Tournament selection: From the population, it selects k
individuals, then finds one the best of them and returns him.

2) Rank selection: This algorithm sorts the population
in descending order (firstly, go better individuals). Then, it
calculates a distribution, where the first members have higher
priority than the last.

3) Boltzmann selection: This selection mechanism applies
principles from simulated annealing to control selection pres-
sure thermodynamically. The temperature is preset to control
the selection rate and starts at a high level, resulting in lower
selection pressure. Over time, the selection pressure increases,
and individuals with better fitness are favoured in the selection
process.

4) Proportional selection: In this algorithm, each Individ-
ual has a probability of being selected:

Pi =
fitness[i]∑n

k=1 fitness[k]
(1)

The algorithm generates a distribution and randomly selects
an Individual from that distribution.

III. LIBRARY INTERFACE

The library [1] includes three fundamental classes that
define the API.

A. Individual

Individual is an abstract class that has 2 required attributes
(solution and fitness) and 1 method (spaceship operator). The
solution is a vector of type size t. Each number could represent
something at the discretion of the user. Fitness is a measure
of how good the Individual is.

B. Population

Population is an abstract class that other classes should
inherit. This class comprises four attributes (population and
selection, crossover, and mutation types) and methods that
implement default algorithms. To select a different algorithm,
use the setCrossover (setSelection, setMutation) function and
pass the required algorithm. Available algorithms are stored
in corresponding enums (selections, crossovers, mutations). If
a particular algorithm is unavailable, the user should override
the corresponding function (further details to follow).

Additionally, this class features three more methods:
evaluate, isFirstBetterThanSecond, and getBest. isFirstBet-
terThanSecond a function that says which of two Individuals
is better (with the higher fitness by default, but the user can
override this function). getBest returns the best Individual from
the population according to the previous function. The user can
override them both if he needs to. evaluate should return the
fitness of an Individual. The user should override this function
for their purposes.

C. Solver

Solver — a class that makes logic to solve some genetic
problem. The constructor takes a SetUp struct as the only
argument. It has four fields: generation number, mutation rate,
crossover rate, and sorted. Those rates describe how many
mutations and crossovers will be performed. The rates must
be [0, 1], and their sum must be ≤ 1. The generation number
is the number of iterations that will be done. Sorted (default
false) means sorting the population after each generation. For
instance, it could be useful for rank selection (if the user
selects some default selection/crossover/mutation that requires
sorting, the sorted attribute is set to true automatically; there
is no need to change it manually).

To solve a problem, use the solve method. This method
makes generationsNum iterations. On each iteration, we make
crossoverNum of crossovers, mutationNum of mutations, and
update the current population.

D. Example

To solve the problem, the user needs to create a new
population class, which extends from the Population. In the
constructor, he should initialize the population: make Individ-
uals, and evaluate their fitness. Also, the user needs to override
the evaluate function for his purposes.



If the user finds it useful, he can override mutation,
crossover, and/or selection to use his algorithm or one of the
existing ones. To do that, the user calls a setSelection (or other
corresponding function) method of the extended population.

To run solving, the user calls the solve method of Solve
instance and gives an extended population as an argument.
The result will be the best Individual after evolution.

IV. PARALLELIZATION

To run in parallel, our library uses Thread Pool. Since
all crossovers, mutations, and selections in the solve method
could be done independently, the library performs them in
parallel. By default, it uses all available hardware threads, so,
in general, the parallel version will run 6-8 times (depending
on the number of threads on the user’s computer) faster than
in 1 thread.

V. TESTING

To test this library, we chose the Travelling Salesman
Problem [2]. The exact solution to this problem can be found
in O(2nn2) using the Held-Karp algorithm, which means
every additional point on the graph will double the time up.
There is no sense in waiting for a solution of more than 25-30
points. Also, this implementation of the Held-Karp algorithm
is parallel and uses Thread Safe Queue. But actually, this
allows us to add only 1 extra point to the graph.

At the same time, this library works with graphs of sizes
100 and even 1000. We could control the execution time and
precision using SetUp parameters and generation numbers.

Also, you can find an example of the Knapsack Problem on
GitHub.

VI. RESULTS

A. Time complexity

This plot shows that the time complexity is linear to the
number of nodes if you use the right number of threads.

Also, this plot shows that our algorithm has a linear depen-
dency on the number of generations.

This leads us to conclude that time complexity O(n ∗ d),
where n is the number of nodes and d is the number of
generations.

B. Parallelization level

We will use Amdahl’s law to identify how many percent of
the programs are parallelized.

T (n) = T (1− p) +
Tp

n
(2)

• T - computation time
• p - parallel part
• n - number of threads

The equation is a Polynomial of -1 power. Thus the follow-
ing system can be created.


1 1

n1

1 1
n2

1 1
n3

... ...
1 1

n10


(
T (1− p)

Tp

)
t1
t2
t3
...
t10


A normal equation can be applied to find the best least

square solution of the polynomial. The solution is found in
bound of 10 threads because the machine which run the
program has only 6 cores with 12 logical cores.

ATAx = AT b (3)

Solving those linear equations gives us the following results.(
T (1− p)

Tp

)(
18692.2
186841.3

)
So T = T (1 − p) + Tp = 205533.5, and p = Tp

T ≈ 0.9.
So, the level of parallelization is 90%.



Also, here is a plot of this approximation. The red dots are
the results of running, and the blue line is a predicted time,
given that the parallelization level is 90%.

VII. CONCLUSION

The library provides an interface to solve the Genetic
Algorithm and Knapsack problems. It is easy to use and has a
lot of built-in algorithms. The library is parallelized and uses
all available hardware threads. The library has been tested on
the Travelling Salesman Problem and has shown good results.
Time complexity is linear in terms of the number of nodes
and generations. The level of parallelization is 90%.

VIII. ACKNOWLEDGMENT

We would like to thank Roman Milischuk for his help and
guidance during the project.

REFERENCES

[1] DmShums. (2024). GitHub - DmShums/ga lib. GitHub.
https://github.com/DmShums/ga lib

[2] Shendy, R. (2024, January 28). Traveling Salesman Prob-
lem (TSP) using Genetic Algorithm (Python). Medium.
https://medium.com/aimonks/traveling-salesman-problem-tsp-using-
genetic-algorithm-fea640713758

[3] Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge:
MIT Press.

https://github.com/DmShums/ga_lib
https://medium.com/aimonks/traveling-salesman-problem-tsp-using-genetic-algorithm-fea640713758
https://medium.com/aimonks/traveling-salesman-problem-tsp-using-genetic-algorithm-fea640713758

	Introduction
	Genetic Algorithms overview
	Traveling Salesman Problem
	Held-Karp algorithm

	Genetic Algorithms in detail
	Population
	Crossover
	Default crossover (Order crossover)
	Uniform crossover

	Mutation
	Default mutation (Swap mutation)
	Inversion mutation
	Rotation mutation

	Selection
	Tournament selection
	Rank selection
	Boltzmann selection
	Proportional selection


	Library interface
	Individual
	Population
	Solver
	Example

	Parallelization
	Testing
	Results
	Time complexity
	Parallelization level

	Conclusion
	Acknowledgment
	References

