
UKRAINIAN CATHOLIC UNIVERSITY

FINAL PROJECT

Ant colony optimization algorithms

Authors: Viktoria Kocherkevych,
Yaroslav Klym

Mentor: Oleksii Ignatenko

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2023

1

Abstract
This is a project for an Architecture of Computer Systems course, and the main

topic of this project is to introduce ant colony optimization (ACO) algorithms. The
project report starts with an introduction, then we describe the first problem we

solved using the Ant System (AS) while showing sufficient results of experiments.
Then we introduce the second problem, discuss solutions and show results. The

code of the project can be found here: Github

https://github.com/ViktoryaK/aco_algorithms

2

Contents

1 Introduction 3

2 Traveling salesman problem 4
2.1 Description . 4
2.2 Our solutions . 4

2.2.1 Ant system . 4
2.2.2 Mutations . 5
2.2.3 Elitism . 5
2.2.4 Ant colony system . 5
2.2.5 Max-Min ant system . 5

2.3 Algorithms comparison . 6
2.4 Quality comparison with other solutions 6
2.5 Efficiency comparison (Parallelization) 6

3 Stable matching problem 13
3.1 Description . 13
3.2 Our solution . 13

3.2.1 Min preference . 13
3.2.2 Offer and accept . 13

3.3 Quality comparison with another solution 14
3.4 Efficiency comparison . 14

4 Conclusions 17

Bibliography 18

3

Chapter 1

Introduction

ACO algorithms are well-known in the field of optimization algorithms. They are
often misunderstood as being evolutionary algorithms, which is not true. So how
do they work?
Ants are pretty simple creatures, which can efficiently survive only while working in
groups. We will emphasize their special way to navigate to food. Each ant leaves a
pheromone while it moves. Then, other ants can sense the pheromone on the ground
and choose the way, where there are more pheromones. Therefore, they will follow
the way other ants followed more frequently and after some time they will construct
the shortest way.[4]
Inspired by ants, the Ant Colony Optimization algorithms are frequently used when
the shortest path is needed.

4

Chapter 2

Traveling salesman problem

2.1 Description

The first problem we consider is the well-known combinatorial optimization prob-
lem - The traveling salesman problem(TSP). As was mentioned before, the ACO
algorithms are frequently used for finding the shortest path. This is the case. The
traveling salesman problem can be formulated in the following way: there is a com-
plete undirected weighted graph. The question is: find the Hamiltonian cycle with
the minimum total distance.
Since finding the Hamiltonian cycle is classified as an NP-hard problem, the compu-
tation of an optimal solution for large graphs in a reasonable time is hard. Therefore,
we will use the Ant colony optimization algorithms (which are stochastic) to find the
close-to-optimal solution for the TSP.

2.2 Our solutions

2.2.1 Ant system

Ant system (AS) is the simplest first version of the algorithm.
During the set number of iterations(generations), we send "ants" to randomly go
through the graph. The probability of going from node i to node j through edge eij
is determined by the amount of pheromone on this edge and the distance between
these nodes and calculated using the formula:

pij =
ϕα

ij/dβ
ij

∑n
m=1,m/∈Ck

ϕα
im/dβ

im

where ϕij - the amount of the pheromone on the eij, dij - the distance between nodes
i and j, Ck - set of nodes that already were added to the path, α - pheromone im-
portance constant, β - heuristic information constant. Pheromone importance and
heuristic information constants are used to determine the relative importance be-
tween pheromone amount and distance between nodes.
Then, after every ant constructs the path, we distribute pheromones between every
node. If ant n went through eij the amount of the pheromone added to this edge is
calculated by the formula:

∆ϕij = Q/Ln

, where ∆ϕij - amount of pheromone added, Ln - a total distance of the path cre-
ated by ant n, Q - deposition constant, number of the pheromone added, for a total

Chapter 2. Traveling salesman problem 5

distance 1. At the start of the simulation, edges already have some amount of the
pheromone, which is determined by the initial pheromone constant. Also, after each
generation, some amount of pheromone evaporates. Evaporation is implemented
by the formula:

ϕij = (1 − ρ)ϕij

where ϕij - amount of the pheromone on the eij, ρ - evaporation rate constant.

2.2.2 Mutations

Among modifications of AS implementation, first, we will discuss mutations. Every
ant has some probability of being mutated. Then it will ignore pheromones and
distance between nodes and go through the graph absolutely randomly. Mutations
are implemented using a mutation rate constant, which is the probability of getting
mutated. This ensures some amount of randomness and the possibility of finding a
better solution on the other path.

2.2.3 Elitism

Elitism is another modification of AS. The idea is on each turn to choose some ants
that found the shortest paths and then force them to repeat the same path in the next
generation. This ensures that the best route will not be forgotten between genera-
tions of ants. The number of elite ants is also given with other constants used.

2.2.4 Ant colony system

Ant colony system(ACS) is a modification of AS that is based on two important
extensions. First is that as ants traverse through the graph, they leave some amount
of "negative" pheromone so that the next ant will go through this edge with a lower
probability. That ensures that ants will not choose the same path every time. The
amount of pheromone on the edge after the ant goes through it is calculated by the
formula:

ϕij = (1 − θ)ϕij + θϕ0

where ϕij - amount of the pheromone on the eij, ϕ0 - initial pheromone, θ - pheromone
decay constant.

Another extension is the introduction of the exploration constant. At every step of
traversing the graph, there is some probability that the ant will choose the edge with
the biggest amount of the pheromone with a 100 percent chance.

2.2.5 Max-Min ant system

The last modification of AS we will discuss is the Max-Min ant system(MMAS). This
modification has two main features. First is that pheromones are distributed only
between the edges of the lowest cost path. Second, the amount of the pheromone
on the edge is bounded. There are two more constants: min pheromone and max
pheromone, that don’t allow the amount of pheromone on the edge to be lower than
min and greater than max.

Chapter 2. Traveling salesman problem 6

2.3 Algorithms comparison

The most important metric for comparison of the algorithms is the length of the paths
found. In pictures 2.1-2.4, there are graphs that compare the minimum found path
and most chosen path at each generation. The lower boundary on the y-axis is the
minimum possible path. On the graph, you can also see the variance lines. As we
can see minimum found paths for all algorithms are quite similar, which shows that
all of the algorithms are working well.

2.4 Quality comparison with other solutions

In addition to ant colony algorithms, we implemented the simplest genetic algo-
rithm to solve the TSP. It was implemented because we wanted to compare the per-
formance of the ACO algorithm and the genetic algorithm.
The genetic algorithms are metaheuristic optimization algorithms that are inspired
by evolution and nature. There are a few important things to remember about them
and this algorithm specifically: the generation is initialized, fitness evaluation (in
this case, it is better to follow the shortest path), then there is selection, mutation,
new generation, and so on.[3] It was proved by us that the genetic algorithm, be-
cause of its nature, works faster but returns less accurate results. You can see on
graph 2.5, that for the result close to ACO algorithms on the 10th generation, you
need 300 generations here.

2.5 Efficiency comparison (Parallelization)

In this section, we will discuss the effectiveness of the parallelization method we
chose.
In this project, we used boost::asio::threadpool[2]. The part of the algorithm which
we made parallel is the traversing of the graph by ants. We put ants in the dif-
ferent threads. The only algorithm we didn’t parallelize is ACS, as this algorithm
needs communication during traversing when ants put "negative pheromones" on
the edges. Picture 2.5-2.10 demonstrates time dependency to the number of threads
and effectiveness of parallelization

Chapter 2. Traveling salesman problem 7

0 5 10 15 20 25 30
Number of iterations

5100

5350

5600

5850

6100

6350

6600

6850

7100

7350

7600

7850

Pa
th

 le
ng

th

Average graph for ACO algorithm
Most popular
Minimum

FIGURE 2.1: ACO

0 5 10 15 20 25 30
Number of iterations

5100

5350

5600

5850

6100

6350

6600

6850

7100

7350

7600

7850

Pa
th

 le
ng

th

Average graph for Elitism algorithm
Most popular
Minimum

FIGURE 2.2: Elitism

Chapter 2. Traveling salesman problem 8

0 5 10 15 20 25 30
Number of iterations

5100

5350

5600

5850

6100

6350

6600

6850

7100

7350

7600

7850

Pa
th

 le
ng

th

Average graph for ACS algorithm
Most popular
Minimum

FIGURE 2.3: ACS

0 5 10 15 20 25 30
Number of iterations

5100

5350

5600

5850

6100

6350

6600

6850

7100

7350

7600

7850

Pa
th

 le
ng

th

Average graph for MMAS algorithm
Most popular
Minimum

FIGURE 2.4: MMAS

Chapter 2. Traveling salesman problem 9

FIGURE 2.5: Generation to shortest path comparison

Chapter 2. Traveling salesman problem 10

1 2 4 6 8 12
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt
Effectiveness of parallelization coefficient for function 1

FIGURE 2.6: Efficiency for ACO

1 2 4 6 8 12
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt

Effectiveness of parallelization coefficient for function 2

FIGURE 2.7: Efficiency for Elitism

Chapter 2. Traveling salesman problem 11

1 2 4 6 8 12
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt
Effectiveness of parallelization coefficient for function 3

FIGURE 2.8: Efficiency for MMAS

1 2 4 6 8 12
Number of threads

0

200

400

600

800

1000

1200

Ti
m

e

Time plot for function 1

FIGURE 2.9: Time dependency of ACO

Chapter 2. Traveling salesman problem 12

1 2 4 6 8 12
Number of threads

0

200

400

600

800

1000

Ti
m

e

Time plot for function 2

FIGURE 2.10: Time dependency of Elitism

1 2 4 6 8 12
Number of threads

0

200

400

600

800

1000

Ti
m

e

Time plot for function 3

FIGURE 2.11: Time dependency of MMAS

13

Chapter 3

Stable matching problem

3.1 Description

The Stable matching problem (also called the Stable marriage problem) is a relevant
problem, which tends to occur in real life. It can be described in terms of the follow-
ing rather typical situation: n applicants apply to m universities, and the admission
office has to decide which ones to admit to it.[1] Both universities and applicants
have their preferences (some conditions based on which they can decide whether
the other is worthy to be chosen. The problem is: how to make stable correspon-
dences, where everybody will be satisfied with the result.
We consider slightly another formulation of the problem: a stable marriage problem,
where there is a need to find the most profitable stable pairings of men and women.
The stability condition is defined as follows:
The pairing of men and women will be called unstable if there exists a woman w who prefers
a man m1 over her current partner and that man m1 prefers the woman w over his current
partner. [1]
The authors of the cited article are also the authors of the main algorithm used to
solve this problem: The Gale-Shapley algorithm, which finds a stable matching in
time complexity of O(n2). We will try to solve this problem using ant colony opti-
mization and provide some comparison with already existing solutions.

3.2 Our solution

3.2.1 Min preference

Our first solution is quite similar to AS for TSP. The first step is creating a bipartite
graph where on the left side are men and on the right side are women. Edges show
pair, and the value of the edge is a sum of the preferences of both members of the
pair. Then when we have a graph, we send ants from all "man" nodes to "woman"
nodes. As in the ant system for TSP, the probability that the ant will choose is de-
termined using the value of the edge and the amount of the pheromone. After ants
construct paths, pheromones are distributed between edges. This algorithm finds
the minimum of the sum preference between all pairs but not a stable matching.

3.2.2 Offer and accept

Similar to the Gale-Shapley algorithm, this algorithm starts with sending offers to
the opposite side, and then they can be accepted or declined. We also start with a
bipartite graph, but the difference is that now it is directed. On one side, there is the

Chapter 3. Stable matching problem 14

preference for men, and on the other, the preference for women. The first step is that
ants from the men’s nodes of the graph build paths to the opposite node. Then they
distribute pheromones between nodes, and the turn goes to the women nodes. Now
they build paths and one more time distribute pheromones. In the end, we one more
time go through the graph choosing nodes with the biggest amount of pheromones.

3.3 Quality comparison with another solution

We implemented the original Gale-Shapley algorithm and performed some compar-
isons to our method.
First of all, the Ant colony optimization cannot return the full list of stable match-
ings. Stability is a quality, which cannot be fully satisfied using our implementations,
therefore, we chose it to be one of the metrics of quality of an algorithm.

The second metric we used to build some conclusions about the work of the algo-
rithms was the average preference number of the partner chosen. Where the lower
the number, the most preferable partners were chosen.

We put both metrics on the graphics 3.1-3.3

We can see that the second algorithm gives the solution in terms of average pref-
erence more like Gale-Shapley, but give less stable result. Min preference actually
works not that badly, but we can see that the bigger number of pairs - the less stable
pairs.

3.4 Efficiency comparison

If we compare these two algorithms with Gale-Shapley in the way of the time they
consume, we can say that actually, Gale-Shapley is still working faster. Algorithmi-
cally both algorithms O(n2). Also, we parallelized algorithms, but they were still
slower than Gale-Shapley.

Chapter 3. Stable matching problem 15

Gale-Shapley Offer Min
Number of pairs

0

20

40

60

80

100

Pe
rc

en
t o

f s
ta

bl
e

pa
irs

Stable pairs comparison
10 pairs
100 pairs
1000 pairs

FIGURE 3.1: Percentage of stable pairs for different numbers of pairs

Gale-Shapley Offer Min
Number of pairs

0

100

200

300

400

500

Av
er

ag
e

m
an

 p
re

fe
re

nc
e

Average man preference comparison
10 pairs
100 pairs
1000 pairs

FIGURE 3.2: Average man preference on different numbers of pairs

Chapter 3. Stable matching problem 16

Gale-Shapley Offer Min
Number of pairs

0

100

200

300

400

500

Av
er

ag
e

wo
m

an
 p

re
fe

re
nc

e

Average woman preference comparison
10 pairs
100 pairs
1000 pairs

FIGURE 3.3: Average woman preference on different numbers of
pairs

17

Chapter 4

Conclusions

In conclusion, this project explored the application of Ant Colony Optimization
(ACO) algorithms to two classic optimization problems: the Traveling Salesman
Problem (TSP) and the Stable Marriage Problem (SMP). The aim was to investigate
if there is a reason to choose the ACO algorithm over other alternatives in solving
those two problems.
To sum up, the first problem is classic and the ant colony solution is one of the
common-known solutions to this problem. Here we proved once again that the ACO
algorithms are suited to solve this problem (though they are still stochastic). Also,
we tried to use ACO in some new for this algorithms field. But sadly, this algorithm
didn’t solve it well. It is slower and gives fewer correct solutions.

18

Bibliography

[1] D. Gale and L. S. Shapley. “College Admissions and the Stability of Marriage”.
In: The American Mathematical Monthly 69.1 (1962), pp. 9–15. ISSN: 00029890,
19300972. URL: http://www.jstor.org/stable/2312726 (visited on 06/01/2023).

[2] Christopher M. Kohlhoff. “threadpool”. In: (2003-2017). URL: https://www.
boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/thread_
pool.html.

[3] Pedro Larranaga et al. “Genetic Algorithms for the Travelling Salesman Prob-
lem: A Review of Representations and Operators”. In: Artificial Intelligence Re-
view 13 (Jan. 1999), pp. 129–170. DOI: 10.1023/A:1006529012972.

[4] Dan Simon. Evolutionary Optimization Algorithms. Wiley, 2013. URL: https://
www.perlego.com/book/2759801/evolutionary-optimization-algorithms-
pdf.

http://www.jstor.org/stable/2312726
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/thread_pool.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/thread_pool.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/thread_pool.html
https://doi.org/10.1023/A:1006529012972
https://www.perlego.com/book/2759801/evolutionary-optimization-algorithms-pdf
https://www.perlego.com/book/2759801/evolutionary-optimization-algorithms-pdf
https://www.perlego.com/book/2759801/evolutionary-optimization-algorithms-pdf

	Introduction
	Traveling salesman problem
	Description
	Our solutions
	Ant system
	Mutations
	Elitism
	Ant colony system
	Max-Min ant system

	Algorithms comparison
	Quality comparison with other solutions
	Efficiency comparison (Parallelization)

	Stable matching problem
	Description
	Our solution
	Min preference
	Offer and accept

	Quality comparison with another solution
	Efficiency comparison

	Conclusions
	Bibliography

