
Digital Modelling Of Protein Systems Using
Monte-Carlo Simulation

Anna Yaremko
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

yaremko.pn@ucu.edu.ua

Bohdan Pavliuk
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

pavliuk.pn@ucu.edu.ua

Iryna Kokhan
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

kokhan.pn@ucu.edu.ua

Petro Mozil
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

mozil.pn@ucu.edu.ua

Taras Patsagan
Institute of Condensed Matter Physics

National Academy of Sciences of Ukraine
L’viv, Ukraine

tarpa@icmp.lviv.ua

Abstract—This document describes the general workflow of
particle simulation using patchy particles and the structure of the
particular realization of it for two ensembles: NV T and µV T .
The implementation relies on CUDA to improve performance,
and a big part of the work focuses on describing the optimizations
for parallel implementation of the simulation.

Index Terms—Digital simulation, Monte Carlo simulation par-
allelization

I. INTRODUCTION

In this work, we simulate patchy particle systems with the
Monte-Carlo Metropolis algorithm. The general algorithm is
described in [4].

The patchy particle model is useful for particle simulations
at different scales. Particles have anisotropic properties, the
most popular being chemical potential, patches upon the
particles, or both. The particles are hard spheres that repel
each other, and the patches attract.

The interaction can be described by two potentials: inter-
action between spheres and interaction between patches. A
square-well potential is often used due to its simplicity of
calculation.

Monte-Carlo particle simulation is one of the two popular
methods for particle simulation, the other being Molecular
Dynamics (MD). For generating moves, the system uses a
Markov chain and then accepts the move at random. The
Markov chain does not have to follow an actual physically
allowed process and thus could be optimized more than MD.

We first implement the algorithm for patchy particle simu-
lation and then optimize the algorithm. We found three ways
for optimization:

• Parallelization of random number generation.
• Parallelization of energy calculation.
• Parallelization of particle moves.

Fig. 1. An illustration of patchy particles. Image by [5].

II. THEORETICAL OVERVIEW

A. Definitions

With the aim of preventing misunderstandings, here we
provide definitions for some of the ambiguous terms:

1) Device memory – a term used by CUDA for memory
on the GPU.

2) Host memory – a term used by CUDA for memory on
the CPU.

3) Single Bond Per Patch Condition – a condition re-
quired by simulation algorithms to simplify calculations.
It states that a patch can only bond with one patch at a
time. It is enforced by setting the radius of the patch to
≤ 0.119 of the radius of the particle.

4) Cell – a leaf of the octree data structure. A part of the
space (usually of cubic shape) that contains a certain
number of particles.

B. Ensembles overview

The NV T ensemble, known as the canonical ensemble,
fixes the volume, temperature, and number of particles in the

mailto:yaremko.pn@ucu.edu.ua
mailto:pavliuk.pn@ucu.edu.ua
mailto:kokhan.pn@ucu.edu.ua
mailto:mozil.pn@ucu.edu.ua
mailto:tarpa@icmp.lviv.ua


system. The fixed number of particles is especially useful for
simulation as it simplifies calculations of the system’s energy.

In the NV T ensemble, there are two types of actions:
• moving a particle,
• rotating a particle.
Both of these actions could be performed as a single one,

known as a rototranslation, but for the purpose of clarity, we
implement these as two separate actions. For each move, only
the repulsive potential between hard spheres and attraction
between particles is calculated.

The µV T ensemble, known as the grand canonical ensem-
ble, fixes the volume and the temperature as NV T does, but
instead of the number of particles, µV T fixes the chemical
potential of the system.

In the µV T ensemble, there are three types of actions:
• moving a particle,
• rotating a particle,
• adding or deleting a particle.
For the µV T ensemble, the moves related to the NV T

ensemble are still valid, so the calculation of probabilities of
moving and rotating a particle is unchanged. However, there
is also a new function describing the probability of adding or
deleting a particle.

C. Implementation details

We only implemented the NV T and µV T ensembles in
this work. The project uses an acceleration structure akin to
an oct-tree to optimize particle intersection calculation and
implements the square-well and Lennard-Jones potentials – a
mathematical model that describes the interaction between a
pair of neutral atoms or molecules, which is widely used in
molecular physics to approximate the behavior of non-bonded
interactions in a system.

We use the Metropolis heuristic, which adds a chance of
rejecting the particle movement even after a proper move, and
the probability of that is calculated by taking the difference
between the system’s energy before and after the move.

The particles are stored in a container with the number of
particles and the size of the simulation box. The box also
contains a pointer to an array in device memory. On each
successful particle move, the particle is copied to that array
as if updating the position of the particle.

The particles are represented by hard spheres, and the
patches on them are just points on a sphere, represented by a
quaternion. The particles have three properties:

• radius,
• position,
• patches.

Note that the particle record does not contain an orientation
position.

The patch has one property:
• orientation.
Each cell has a list of particle indices.
The cell view contains all the info about the system:
• the particle box,

• the split cells,
• functions for particle energy calculation and movement.
We use the Kern-Frenkel model to simulate patch-patch

interactions. In this model, each particle can have an arbitrary
number of patches at arbitrary positions on the particles. Each
particle’s radius is 0.119 of the radius of its parent particle.
When the particle is rotated, the patches’ positions are simply
rotated. Since the position of the patch is a unit quaternion,
we could simply rotate them on the particle.

For calculating the patch-patch potential, we first calculate
the vector between the particles. If its magnitude is more than
1.119, the patches cannot interact, so we return 0. Otherwise,
we calculate the degree between the vector and orientation of
the first patch. If the cosine of this angle is more than the given
value (the cosmaxθ), we go on to calculate the same value
of cosine for the patch on the second particle. If the cosine is
more than cosmaxθ, we return the energy of the interaction,
else return 0.

θ

Fig. 2. Illustration of the Kern-Frenkel calculation of patch-patch interaction.

For the particle-particle interaction, we use a simple square
well potential. It is implemented as:

V (x) =

{
−V0 for 0 ≤ x ≤ θmax;
0 otherwise. (1)

where θmax is the given parameter for the width of the square
well, and V0 is the parameter that describes the energy of the
interaction.

Since, for the two ensembles (NVT and µVT), the Single
Bond Per Patch Condition must be met, in our simulation, the
radius of the particles is exactly 0.119 of the particle radius.
We can, thus, simply return the said value for the patch-patch
energy after finding a single valid patch-patch bond.

III. POTENTIAL OPTIMIZATIONS

The simulation can be parallelized in two ways: paralleliz-
ing energy calculation and simulating multiple particles at
once. Parallelizing energy calculation is very straightforward,
but parallelizing moves for each particle are not. However,
because we use square-well potential, it can be done – if
particles are further than a given range, they do not affect
each other. Another way is optimizing RNG since the host-side
generation of random numbers is sequential, and the demand
for random numbers is high in Monte-Carlo simulations.



A. Parallel RNG
Generating random numbers on the GPU is not complicated

since CUDA provides CURand, a library for random number
generation both on the host and on the device. It also provides
quasi-random number generators.

The algorithm of parallel random number generation is
simple – to generate N random numbers N RNG states
must be created in the device memory. Then, call the device
code that generates the random numbers and copy them to an
appropriate location.

The biggest problem with this is that when more than
approximately 1000 random numbers are needed, more than
1000 threads are to be run in parallel. Since this may not be
possible on older devices, our implementation launches 256
threads at once in multiple blocks. Blocks in CUDA are not
necessarily executed in parallel. Thus, the generation may slow
down for a great amount of random numbers. Still, it speeds
up the simulation approximately thrice as fast as host RNG.

Fig. 3. Comparison of host vs device RNG runtimes speed.

B. Parallel energy calculation
Since an octree to optimize energy calculation is readily

available, parallelizing the calculation is simple: simply iterate
over the particles of each of the neighboring cells in parallel. In
essence, we split the work of calculating the energy between
particles in between threads in such a way that each thread
only iterates over the particles in one cell.

To figure out which cell the particle belongs to, we use the
following formula:

p idx =
p.x

cell size.x
∗ cells per axis2

+
p.y

cell size.y
∗ cells per axis+

p.z

cell size.z

To check which cells neighbor the particle, we simply
add/subtract the size of a cell’s side to the particle’s position.
The parallelization process is straightforward since it is just
packing a triple for loop into a CUDA kernel call.

When computing sparse systems, however, it may happen
that the CPU simulation is faster – the overhead of synchroniz-
ing particle positions on the GPU may not be worth the faster
calculations. For this reason, we only calculate the energy on
the device when a cell has more than 80 particles in it.

Fig. 4. Comparison of CPU vs device GPU calculations speed.

C. Parallelizing particle movement

This task is the most complicated conceptually since par-
ticles influence each other irrespective of distance in a real
system. For the system with square-well potentials, however,
for a particle of radius r1, only particles in the range 2∗r1+σ
matter. Hence, if we set the maximal move distance for a
particle to be λ, we can move two particles of radii r1 and r2
at a distance greater than 2 ∗max(r1, r2) + σ + λ in parallel,
without side effects.

There are two possible approaches to this operation:

• Select N particles at random while they are at a great
enough distance.

• Select random particles from cells selected in a
”chessboard-like” pattern.

The first method is useful, since no change of selection must be
done. For the second method, the cells selected must alternate,
and that introduces complexity. The first method, however,
may be fairly inefficient, as it requires more random number
generation.

Using parallel particle movement on the CPU doesn’t lead
us to any speedup, the reason for the result has to be subop-
timal use of movement particles, because all threads lock our
whole structure to lead it unchanged by other threads.

We also have domain decomposition calculation on GPU,
but only positions, without implementation of parallel energy
calculation, since this idea is architecturally incompatible with
the previously implemented parallel energy calculation of
particles.



Fig. 5. Illustration of alternating cell selection.

IV. RESULTS

Composing the random numbers generation, energy cal-
culation and domain decomposition gave us a speedup of
approximately 3.5 times. The amount of communication on
each iteration was a bottleneck – to achieve further speedup,
a rework of how we stored particles is required.

Fig. 6. Comparison of run times for initial and final versions.

To validate the correctness of our algorithm, we calculated
the radial calculation function and normed it in time.

We used the following parameters for the system:
• particle radius is 0.5,
• T = 4,
• 2 patches, top and bottom,
• box: 30x30x30,
• 5 cells per axis, 125 total,
• 16000 particles,
• Yukawa potential: A = −0.5, α = 1.5, σ = 1.0.

V. CONSLUSION

In this work, we implemented a program to simulate patchy
particle systems. We implemented two ensembles: µV T and
NV T . To speed up the simulation, we implemented energy
calculation on GPU and parallel particle movement through
domain decomposition.

The main concern for parallelization of this task is the
amount of communication for each step. Each time a particle

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

g(
r)

r

A - A

A: Yukawa
rA= 0.5925; T = 4

Fig. 7. RDF for a system with Yukawa potential.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8
g(

r)
r

A - A

A: Yukawa
rA= 0.5925; T = 4

Fig. 8. RDF for a system with Yukawa potential and kern-Frenkel patch
potential.

is moved, its data has to be updated in host memory, and its
new position has to be moved to device memory. To somewhat
optimize the constant communication, batched the particle
movement to the device, but the batches could not be too
big since then the old particle positions would not represent
the current state of the system. Our implementation using the
GPU has achieved a speedup of 3.5 times as compared to code
running just on the host.

The code is available on GitHub [7].

REFERENCES

[1] Allen, M.P., Tildesley, D.J., Computer simulation of liquids. Oxford
university press, 2017. https://doi.org/10.1093/oso/9780198803195.
001.0001

[2] Bianchi, E., Blaak, R. and Likos, C.N., Patchy colloids: state of the
art and perspectives. Physical Chemistry Chemical Physics, 13 (2011)
6397. https://doi.org/10.1039/c0cp02296a

[3] Gong, Z., Hueckel, T., Yi, G.R. and Sacanna, S., Patchy particles made
by colloidal fusion. Nature, 550 (2017) 234. https://doi.org/10.1038/
nature23901

[4] Lorenzo Rovigatti, John Russo, Flavio Romano, How to simulate
patchy particles https://arxiv.org/abs/1802.04980

[5] Image of patchy particles https://www.nist.gov/sites/default/files/
images/photogallery/patchy particles.jpg

[6] Illustration of the Kern-Frenkel energy calculation https://hoomd-blue.
readthedocs.io/en/v3.11.0/tutorial/07-Modelling-Patchy-Particles/
01-Kern-Frenkel-Model.html

[7] Code for the particle simulation program https://github.com/tootonee/
particle sim

https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1039/c0cp02296a
https://doi.org/10.1038/nature23901
https://doi.org/10.1038/nature23901
https://arxiv.org/abs/1802.04980
https://www.nist.gov/sites/default/files/images/photogallery/patchy_particles.jpg
https://www.nist.gov/sites/default/files/images/photogallery/patchy_particles.jpg
https://hoomd-blue.readthedocs.io/en/v3.11.0/tutorial/07-Modelling-Patchy-Particles/01-Kern-Frenkel-Model.html
https://hoomd-blue.readthedocs.io/en/v3.11.0/tutorial/07-Modelling-Patchy-Particles/01-Kern-Frenkel-Model.html
https://hoomd-blue.readthedocs.io/en/v3.11.0/tutorial/07-Modelling-Patchy-Particles/01-Kern-Frenkel-Model.html
https://github.com/tootonee/particle_sim
https://github.com/tootonee/particle_sim

	Introduction
	Theoretical overview
	Definitions
	Ensembles overview
	Implementation details

	Potential optimizations
	Parallel RNG
	Parallel energy calculation
	Parallelizing particle movement

	Results
	Conslusion
	References

