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Abstract—This report describes the implementation of a ray
tracer, a rendering algorithm that simulates light propagation to
create realistic 3D images. The goal is to implement it iteratively,
from basic to progressively more advanced techniques, and
explore the trade-off between visual fidelity and performance.

I. INTRODUCTION

3D scene visualization is crucial across various fields, from
Computer Generated Imagery (CGI) in movies to scientific
problems. This process, known as rendering, often employs
ray tracing.

In this project, we developed a simple ray tracer and
iteratively improved it, enhancing visual fidelity and perfor-
mance. The goal is to explore popular ray tracing methods
and evaluate resource requirements.

The initial implementation includes fundamental ray-
object intersection calculations and the Blinn-Phong lighting
model [4]. Subsequent iterations introduce shadows, reflec-
tions, model and texture loading, optimizations using bounding
volume hierarchies [7], and global illumination [12].

II. BACKGROUND

Rasterization and ray tracing are two prevalent rendering
methods. Rasterization converts each primitive (e.g., triangle)
into its pixel representation, considering occlusions based
on the depth (the distance to the camera). The information
about which pixels correspond to what primitive is preserved.
Then, a GPU-based program, a fragment shader [16], runs
for each pixel of the corresponding primitive to calculate
its color. Rasterization is very fast, and modern GPUs are
highly optimized for it [23]. This is why it is the approach
most commonly used in real-time applications, such as game
development.

On the contrary, ray tracing generates at least one ray per
pixel. These rays originate from the camera and are directed
based on the pixel coordinates. They intersect with the scene
to determine the pixel light values. Additional rays simulate
complex light interactions. An example of a ray tracer is
Blender’s Cycles [3], a standard render engine for Computer-
generated imagery (CGI).

Ray tracing is highly parallelizable, with pixel value com-
putations largely independent. This is particularly evident in
basic ray tracing techniques. Thus, ray tracers often utilize
GPUs, though programming for GPUs can be complex and
highly depends on the GPU chosen. Vendor-specific pipelines,

like the CUDA toolchain [24]1, maximize performance for
specific GPUs. Alternatively, graphics APIs offer a unified
interface for CPU and GPU, streamlining parallelization.

III. THE RENDERING PIPELINE

We chose the Open Graphics Library [18] (OpenGL) as
our graphics API. There are two main ways to achieve
massive parallelism with OpenGL: using compute shaders and
leveraging the rendering pipeline. Compute shaders perform
arbitrary parallel computations on the GPU but are far from
easy to use. The rendering pipeline, designed for rasterization,
transforms a 3D scene into an image through a fixed sequence
of steps. It can be repurposed for ray tracing, which is our
chosen approach.

One of the stages of the rendering pipeline is the fragment
shader [16] – a program that runs independently for each
visible pixel of a specific model. Its main purpose is to apply
textures to models. Textures can be generated in this stage,
too. When ray tracing, one generates each pixel of the render
independently in parallel, as if it is a texture, applying this
texture to a simple model, such as a triangle, and covering the
entire viewport2 with it. You can see a visualization of this in
Fig. 1.

Fig. 1. Ray tracer in a fragment shader, visualized.

IV. IMPLEMENTING SIMPLE SCENES

A. Rendering a Sphere

The simplest shading model – that is, a model of how light
interacts with a scene – is flat shading, also known as no

1CUDA toolchain – a set of software development tools and libraries
provided by NVIDIA to program and optimize applications for NVIDIA
GPUs.

2Viewport – the virtual representation of the camera sensor mapped onto
the screen.



shading, showing a uniform color or texture without additional
calculations. An example of a very simple ray tracer is one
that renders a black sphere with flat shading. It displays black
where rays from the camera intersect a predefined sphere and
white elsewhere, rendering a black circle when viewed head-on
(see Fig. 2). An example of flat shading applied to a textured
sphere is shown in Fig. 3.

Fig. 2. A black sphere with flat shading.

Fig. 3. A textured sphere with flat shading.

Flat shading remains relevant in game development. It is
often used with baked lighting [27], a technique that suggests
encoding the lighting information in the texture data. Lamber-
tian surfaces [12], which exhibit uniform brightness regardless
of viewing direction (a full explanation of these is given in
section IX), can be fully represented in static scenes using
this method.

B. Applying Blinn-Phong Shading

Most surfaces look different depending on the viewing
angle. Therefore, more complex shading models like Blinn-
Phong [4] are often preferred. Blinn-Phong estimates the light
intensity using the ray direction, light source direction, and
surface normal.

Direct illumination refers to light reflected from one surface.
The Blinn-Phong model approximates direct lighting from a
point source. Diffuse and specular components, along with
roughness, are considered.

The diffuse component uses the Lambertian model, factor-
ing in the light angle and surface albedo. Intuitively, the more
shallow the incoming light angle, the more the light spreads,
visually darkening the surface.

The specular (mirror-like) component is modeled for each
visible surface point. The Blinn-Phong model approximates
the amount of reflected light by using the directions toward
the light source and the camera, avoiding the need to compute
the reflected ray.

Blinn-Phong is not a Physically Based Rendering (PBR)
model, as it does not accurately reflect real-world light behav-
ior [21]. Figure 4 shows our Blinn-Phong implementation.

Fig. 4. A sphere with Blinn-Phong shading.

The bottom half of the sphere in Fig. 4 receives no light
and appears completely dark. Ambient lighting can be added
to simulate light from other directions. This is done by
multiplying the flat shaded value by a small constant and
adding to the previously described result, as illustrated in
Fig. 6.

C. Handling Multiple Surfaces

Adding multiple objects involves only considering the in-
tersection closest to the camera. However, computing direct
illumination with multiple surfaces requires considering shad-
ows. Shadow rays [30] originate at the initial intersection and
are directed towards the light source. They determine whether
a point on the surface is in shadow. This is the case if a shadow
ray intersects another object on its way to the light source (see
Fig. 5). A render using our implementation is shown in Fig. 6.

Adding shadow rays did not significantly impact perfor-
mance. This iteration ran 3% slower than the flat-shaded
variant. This is because most of the time was spent on tasks
other than running the fragment shader, such as executing other
stages of the rendering pipeline. Detailed measurements for
this and all other improvement iterations are in the results
section, mainly in Table I.

D. Creating Glossy Reflections

Multiple objects enable glossy reflections. Blinn-Phong
assumes that only light coming directly from a source is
reflected. Perfect glossy reflections model any mirror-like
reflections. This is the most straightforward reflection to



Fig. 5. Using shadow ray to find whether the surface is accessible from the
light source.

Fig. 6. A sphere and a ground plane with Blinn-Phong shading and shadow
rays.

model, one where the incoming and outgoing light angles
are symmetrical. Computation involves firing reflection rays
from the intersection point, with their direction based on angle
symmetry. The reflection ray’s value is calculated similarly to
a camera ray’s. If necessary, new reflection rays are created
recursively. The reflection ray’s value is multiplied by a
glossiness factor, determined by the surface material. This
result is added to the direct illumination. Our render is shown
in Fig. 7.

Fig. 7. A sphere, a ground plane, and a reflection plane.

V. LOADING ARBITRARY SCENES

Loading arbitrary scenes is crucial. Static scenes are com-
monly represented by triangles approximating surfaces, as
triangles are simple yet powerful enough for most use cases.
The Graphics Library Transmission Format [17] (GLTF) is an
open and popular choice for storing this representation.

GLTF supports complex features like animations, but only
materials, textures, and triangles are needed for ray tracing.
Triangles are passed to the fragment shader using Shader
Storage Buffer Objects [19]3, while other context data, such
as the screen resolution, is passed through uniforms [20]4.

We check for intersections with all triangles in the scene.
The Möller–Trumbore [22] formula checks for ray-triangle
intersections and provides UV coordinates [6]5, allowing the
display of arbitrary textured models.

VI. ENHANCING PERFORMANCE WITH BVH

Iterating through all triangles for every pixel becomes
impractical for scenes with millions or billions of triangles.
Our solution took 4.1x the time for a 4x more complex
scene, demonstrating near-linear performance. To solve this,
intersection search algorithms with sublinear complexity are
used.

A common approach involves using a Bounding Volume
Hierarchy [7] (BVH). This means creating a tree structure
where the primitives, such as triangles, are the leaves. The
bounding volume of each node encompasses its children, from
volumes encapsulating individual primitives to the root node
that contains the entire scene (see Fig. 8). Checking for ray
intersections begins at the root; if intersected, checks proceed
recursively through child nodes. The entire branch is pruned
if no intersection exists, allowing sublinear complexity.

Axis-Aligned Bounding Boxes [15] (AABB) are often used
to define bounding volumes. In this approach, a bounding
volume is a box where the edges align with the coordinate
axes, simplifying intersection calculations.

BVH with AABBs significantly enhances performance in
large scenes. Rendering a more complex scene, 62,975 instead
of 15,743 triangles, a 4x increase, only increased the time
taken to render a single frame 1.38 times.

Further performance enhancements involve two main steps.
First, discard bounding boxes that intersect the ray beyond
a previously found intersection. Second, traverse bounding
boxes in a front-to-back order, prioritizing closer boxes. This
usually allows for more effective pruning of branches. The slab
method [15] is the most common method for computing the
AABB-ray intersection. It already produces the distance to the
intersection, making implementing these optimizations trivial.
They improved the performance 2.1 times over the 62,975-face
scene rendered with naive BVH and 526 times over an iterative

3SSBOs – a way to transmit data, especially variable-length vectors, to a
shader.

4Uniform – a type of global shader variable, commonly used to pass
parameters.

5UV coordinates: 2D coordinates relative to a texture or vertices, used to
map textures onto 3D surfaces.



Fig. 8. BVH/AABB visualization.

approach. A comparison of these optimizations is shown in
Fig. 9.
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Fig. 9. Ray tracer performance comparison (log scale).

VII. IMPLEMENTING REFRACTION

With enhanced scene-loading capabilities, we could further
improve visual fidelity. A ray tracer, as described so far, can
render direct illumination with shadows and perfectly glossy
reflections. However, there is significantly more to simulate.
Another phenomenon in which ray tracers excel is refraction
– the behavior of transmissive surfaces, such as glass.

In reality, this behavior is quite complex. The incoming light
is partially reflected and refracted. The ratio of reflection to
refraction depends on the properties of the media and the angle
of the ray relative to the surface. The shallower the ray angle,

the more light is reflected. The Fresnel equations [11] describe
these interactions. However, these equations are very computa-
tionally intensive. Schlick’s approximation [26] offers a faster
alternative that is suitable for vacuum-medium interactions.

Fresnel can be used for more than refraction. In computer
graphics, non-transmissive materials are typically classified as
metals or dielectrics [8]. Metals reflect light entirely specu-
larly, while dielectrics reflect light specularly and diffusely.
The Fresnel equations determine the proportion of specular
reflection.

VIII. NORMAL MAPPING

Normal maps [5] allow for the detailing of surfaces without
creating more geometry. These are typically textures used
to adjust surface normals for lighting calculations. They are
widely adopted as they require much less computational re-
sources than the geometry they simulate. Normal maps can be
generated procedurally, not solely specified as textures. Fig. 10
illustrates a cube with an index of refraction of 1.33, similar to
water, featuring a normal map generated using smooth Perlin
noise [25]6.

Fig. 10. A cube with reflection and refraction determined by Fresnel.

IX. ACHIEVING GLOBAL ILLUMINATION

The currently described ray tracer renders shadows (as
shown in Fig. 4) as completely dark or flat-shaded. Advanced
ray tracers, as illustrated in Fig. 11, enhance shadows with
sophisticated bounce lighting – in this case, light reflected
from the plane onto the sphere. Indirect lighting encompasses
any light that interacts with more than one surface.

Two forms of indirect lighting have been described so
far: glossy and translucent. More complex scenarios requiring
realistic light interactions are handled by algorithms known as
global illumination techniques [12].

Global illumination typically employs bounce rays, similar
to reflection rays. Unlike reflection rays, bounce rays have ran-
dom directions, enabling the simulation of complex behaviors,

6Perlin noise: used to create natural patterns like clouds or terrain using
random gradient vectors placed at grid points smoothed by a fade function.



Fig. 11. A sphere and a ground plane rendered with Cycles [3].

such as diffuse surfaces. The rendering equation [13] broadly
models arbitrary lighting scenarios:∫

Ω

L(ωi)F (ωi, ωo, n)(ωi · n) dωi.

This equation describes the light intensity the surface emits
in the direction ωo (e.g., into the camera). Here, L(ωi)
denotes light intensity received from the direction ωi, ωi
and ωo represent incoming and outgoing directions, n is the
surface normal vector, and F (ωi, ωo, n) is the Bidirectional
Reflectance Distribution Function [8] (BRDF) specifying the
amount of light reflected from the direction ωi in the direction
ωo. The Lambertian model is a specific instance of this model,
where the BRDF is a constant function.

X. IMPORTANCE SAMPLING

The indirect lighting approach described suffers from slow
sampling processes. The most impactful lighting comes from
a few specific directions, such as the nearest bright source for
diffuse surfaces. Ray tracers employ importance sampling [29]
to mitigate this, where rays are sampled from a specially
crafted non-uniform probability distribution. This approach
adjusts the sample values by distribution-dependent factors
to compensate for the probability distributions being non-
uniform.

For example, the cosine-weighted distribution [28] is com-
monly used with the Lambertian model. This distribution
ensures that the average of all samples aligns with the expected
value of the rendering equation. The later a bounce occurs,
the less it generally contributes to the resulting image. This is
because its value is multiplied by multiple BRDFs and ωi · n
terms, most of which are less than 1. Therefore, to optimize
performance, typically, only one new ray per bounce is created,
with multiple rays originating from the camera and their values
averaged.

Fig. 12 shows the Cornell box 3D test model rendered using
our cosine-weighted sampling implementation at 128 samples
per pixel. Increasing the number of samples reduces image
noise as the average converges toward the rendering equation’s
actual value.

Fig. 12. Cornell box.

XI. RESULTS

We explored different ray-tracing algorithms and imple-
mented them ourselves, presenting the results in the corre-
sponding sections of this report. We measured the average time
to render a single frame at each improvement iteration. The
results, along with the standard deviation of the measurements,
can be seen in Table I. Performance measurements were
conducted using mangohud logging [9]7 on an Nvidia GeForce
RTX 3080 GPU, rendering at a resolution of 500 by 500
pixels. Note that the scene complexity presented in the table
is just an indication. While the performance of a naive ray
tracer grows linearly as the scene complexity grows, even
implementing a single AABB check for an intersection with
the entire scene can affect the performance drastically. The
code and scenes used for the rendering are available on our
GitHub organization page [14].

XII. CONCLUSION

Throughout this project, we explored various ray-tracing
techniques. Initially, we developed a real-time ray tracer
capable of handling glossy reflections, refraction, and direct
lighting. Subsequent iterations extended its capabilities to en-
compass complex lighting scenarios with global illumination.
We also investigated various methods to optimize rendering
performance. Our implementation maintained real-time per-
formance for every level of visual fidelity except for global
illumination. However, as expected, performance decreased
as visual fidelity increased, even in earlier stages. The better

7Mangohud – an overlay for OpenGL and Vulkan applications to monitor
different metrics, including frames per second.



TABLE I
RAY TRACER PERFORMANCE.

Last feature Scene Avg frame time Std. dev
Without arbitrary scene loading

Flat shading (Fig. 2) 1 primitive 0.29ms 0.04ms
Blinn-Phong (Fig. 4) 1 primitive 0.29ms 0.04ms
Shadow rays (Fig. 6) 2 primitives 0.30ms 0.04ms
Reflections (Fig. 7) 3 primitives 0.30ms 0.05ms

With arbitrary scene loading
Iterative 15743 faces 55ms 1ms
Iterative 62975 faces 226ms 2ms

BVH 15743 faces 0.66ms 0.18ms
BVH 62975 faces 0.91ms 0.21ms

Front-to-back 15743 faces 0.38ms 0.12ms
Front-to-back 62975 faces 0.43ms 0.13ms
GI (Fig. 12) 45 faces 125ms 2ms

the visual fidelity of the image, the more optimizations were
required for it to work within reasonable timeframes.

XIII. FUTURE WORK

A. Denoising

There are ways to improve both the visual fidelity and
the performance further. Ray-tracing noise patterns are pre-
dictable, allowing post-processing techniques to improve the
final image quality. Denoising [1] enhances visual quality,
removing most of the noise without substantial increases in
render time.

B. Visual fidelity

We implemented light transport according to bidirectional
reflectance distribution functions. This is not a complete light-
ing model. The assumption is that light exits the surface at the
entry point. In reality, this is not always the case. Phenomena
such as volumetric scattering [10], necessary for accurate fog
simulation, cannot be fully modeled this way.

C. Performance

A common technique for further improving performance is
adaptive sampling, allocating more rays to those areas of the
image that are more noisy. In this way, a similar total sample
count converges on a clean image significantly faster. Yet
another approach is ReSTIR [2]. ReSTIR suggests resampling
the global illumination at each step, sampling more from the
directions that produce the most light, and reusing the data
from neighboring pixels and previous frames.
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