
Real-time Deep-Learning Image Matching on Edge
Mykhailo Buleshnyi

Faculty of Applied Sciences
Ukrainian Catholic University

L’viv, Ukraine

Maksym Buleshnyi
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

Artur Pelcharskyi
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

Davyd Ilnytskyi
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

Roman Milishchuk
King’s College London,

United Kingdom

Vasyl Borsuk
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

Mykola Morhunenko
Faculty of Applied Sciences

Ukrainian Catholic University
Ukraine

Abstract—In recent years, machine learning has experienced an
immense surge in popularity. As the accuracy of models has
significantly improved, there has been a corresponding increase
in the resources required to execute them. In certain scenarios,
it becomes crucial to employ complex deep-learning models on
embedded devices in real-time. The objective of this work is
to enhance the ALIKE model’s speed while minimizing any
potential loss in accuracy, targeting the embedded platforms,
such as a BeagleBone AI-64.

I. INTRODUCTION

Image matching is one of the main tasks of 3D Computer
Vision and is necessary for solving tasks such as Visual local-
ization, Pose Estimation, and 3D Reconstruction. It also allows
significantly improve the quality of video from the camera
through multi-frame super-resolution and video stabilization.
It is widely used in autonomous robotics platforms like cars,
drones, etc. The goal of this work is to efficiently run a deep
learning keypoint extractor named ”Accurate and Lightweight
Keypoint Detection and Descriptor Extraction” (ALIKE) on a
single-board computer BeagleBone AI-64 to make it possible
to use it for real-time tasks.

II. EXPERIENTAL SETUP

For our project, we use BeagleBone AI-64, a high-
performance single-board computer with a specialized proces-
sor for particular machine learning and neural networks.

Important tech specs:

• Processor: Texas Instruments (TI) TDA4VM
• GPU: PowerVR® Series8XE GE8430
• SDRAM: LPDDR4 3.2 GHz Q3222PM1WDGTK-U
• Built-in flash memory: eMMC Kingston EMMC16G-

TB29-PZ90 (16GB)

III. EDGEAI TIDL AND OPTIMIZATION

TIDL is a comprehensive software product for the acceleration
of Deep Neural Networks (DNNs) on TI’s embedded devices.

It optimizes overall model performance by converting NN
operations to operations that are more efficient to execute on
the particular TI’s embedded devices.

Another part of optimization is quantization. Quantization is
a common technique used to reduce the model size. This
is achieved by converting model parameters (weights) from
floating-point precision (32-bit or 64-bit) to lower precision
integers (e.g., 8-bit or even binary) where possible.

Fig. 1 illustrates the DNN development and deployment work-
flow on TI devices.

IV. PROBLEMS WITH MODEL OPTIMIZATION

Initially, our decision was to employ ALIKED [Zha+23],
the latest iteration of this algorithm, which has deformable
convolutions as a vital component of the model. However,
we encountered challenges during the process of model con-
version and quantization. Unfortunately, the Edge AI TIDL
framework does not offer support for deformable convolutions,
which leaves a big part of our model without optimization.

However, ALIKE [Zha+22], a little older model with ordinary
convolutions, is much lighter and not much worse in terms
of accuracy. It also includes some parts that can’t be opti-
mized fully with the TIDL - Differentiable Keypoint Detection
(DKD) block, but overall, there is much more space for further
optimization. So, we took this model for our work.

V. ALIKE

As we took ALIKE as our model, it is important to know
some details about the model structure. ALIKE applies a
differentiable keypoint detection module to detect accurate
sub-pixel keypoints. The model is designed to run at 95 frames
per second for 640 x 480 images on a NVIDIA Titan X
(Pascal) GPU.

A. Overall model structure

The model is designed to be as lightweight as possible.
Logically, it can be divided into 4 steps:

• (a) The image feature encoder encodes image using
basic CNN block. It contains four blocks. The first block
is a two-layer 3 × 3 convolution with “ReLU” activation
and the last three blocks contain a max-pooling layer and
a 3 × 3 basic ResNet block.



Fig. 1. EdgeAI TiDL pipeline [Ins24].

Fig. 2. Model structure, red denotes first stage, that can be optimized fully with TIDL, green – can not be optimized fully that way. [Zha+22]

• (b) The feature aggregation module aggregates multi-
level features from the encoder.

• (c) The feature extraction head outputs an feature map.
• (d) The differentiable keypoint detection and de-

scriptor sampling is the last stage, where keypoints are
extracted and descriptors are sampled.

B. Differentiable keypoint detection

To detect key points in score map S, a widely used method
is the Non-Maximum Suppression (NMS). It finds the pixels
with the maximum score within local windows. In ALIKE,
this was improved by using differentiable parts to utilize Deep
Learning. For this goal, the DKD block uses the softmax
function.

First, the block is gaining maximum values via NMS for each
NxN window. After it subtracts the maximum value from the
pixels in the window, normalizing the window. Softmax maps
each value to the probability that this value is a keypoint. The
last step is multiplying the probability for each pixel by its
real values. At the end, the output subpixel key point is given

as:

p = [u, v]Tsoft = [u, v]TNMS + [̂i, ĵ]Tsoft .

C. Learning discriminative descriptor

Descriptors describe how keypoints are transformed on dif-
ferent images. Thus, descriptors of the same keypoints (in
different images) should be similar, whereas descriptors of
different keypoints should be distinct.

• Reprojection loss. To address this problem, this block
is warping keypoints from image A to image B to get
displacement.

pAB = warpAB (pA)

Getting the distance from one point to another via sub-
tracting the keypoint map of image B from A.

distAB = ∥pAB − pB∥p
To normalize this distance, the block is taking the average
between the distance from A to B and from B to A

Lrp =
1

2
(distAB +distBA)



• Dispersity peak loss. The minimization of reprojection
loss optimizes the scores in the local window through
the soft term [̂i, ĵ]Tsoft . However, the gradient step to
improve [̂i, ĵ]Tsoft might affect the [u, v]TNMS . To align
their optimization directions, this block regularizes the
scores in the local window to be “peaky”: that is, it should
have a high score at the keypoint and low scores around
it in the local window. In such a case, even if the local
window centered on [u, v]TNMS is slightly shifted, it still
contains the keypoint, and [̂i, ĵ]Tsoft will be regulated to a
new soft offset w.r.t. the new local window center so that
the keypoint position remains stable. To force the score
patch to be “peaky” exactly at the keypoint, we propose
the score dispersity peak loss. It takes into account the
spatial distribution of scores, resulting in higher scores at
the keypoint and lower scores further away.
Considering a N × N score patch, the distance of each
pixel [i, j]T in the patch to the soft detected keypoint
[̂i, ĵ]Tsoft is

d(i, j) =

{∥∥∥[i, j]− [̂i, ĵ]soft

∥∥∥
p
| 0 ≤ i, j < N

}
.

The dispersity peak loss of this patch is then defined as

Lpk =
1

N2

∑
0≤i,j<N

d(i, j)s′(i, j),

where s′ is the softmax score.

VI. METRICS

A. Model evaluation metrics

Mean Matching Accuracy (MMA) and The Mean Homog-
raphy Accuracy (MHA) are proposed in [Zha+22].

B. Dataset

For this task, we used a sample of the Hpatches dataset
[Bal+17] – the benchmark of handcrafted and learned local
descriptors.

VII. ALIKE OPTIMIZATION ON TI’S DEVICE

A. Different versions of ALIKE models

TABLE I
EXECUTION TIME MEASURED ONLY FOR THE FIRST SEGMENT OF THE

MODEL, AS OUTLINED IN THE 2, ON THE DEVICE.

Model MMA MHA Ex. time Num. of keyp.
Alike-t 12.73% 40% 1.09 1017
Alike-n 13.70% 40% 2.48 726
Alike-l 15.38% 50% 4.5 403

The ALIKE model possesses different configurations: alike-
t, alike-n, and alike-l. They are ordered in ascending order
with respect to their accuracy and execution time (Table I).
As our prior goal was to optimize the algorithm to make it
possible to use it for the real-time tasks, we decided to use
the configuration alike-t. Also important to note is that even
though the number of keypoints decreases, the time taken for
DKD block also decreases. The model was trained on 640 ×

480 images, so for consistency, we fixed that shape for our
model.

B. Where to start

TABLE II
TIME FOR INFERENCE OF ALIKE (ALIKE-T) ON THE DEVICE BEFORE ANY

OPTIMIZATIONS.

Step 2: 0.63
Total time Step 1 Normalization: 0.29

1.72 1.09 DKD: 0.26 (NMS: 0.25)
Other: 0.08

C. Logical parts

Generally, we can divide our model into 2 high-level steps.
The first one combines the CNN encoder, Feature Aggregation
module, and part of the feature extraction head, particularly
split on descriptor and score map + sigmoid operation. The
second step combines L2 Normalization from the (c) block
and the whole (d) block, (see Fig. 2). The reason for this split
is described in more detail in the following sections.

D. First stage optimization

The main goal of this research is to use the Edge AI TIDL
library to make the model faster on embedded devices. How-
ever, not all operations can be converted with the library, or
even if it is possible, there is a chance that such conversion
would not be efficient. So, before optimization, it is important
to prepare a model for conversion. That is the main reason
why we chose this split is that the first part has operations
that are supported by the TIDL. However, the normalization
operation is not supported, and that is why we put it in the
second stage.

Preparation of the model:

1) Move the Transpose and Usqueeze operations outside
the converted part, as TIDL does not support Transpose
and Usqueeze operations.

2) Convert Gather and Slice operations into Split opera-
tions, as Gather, Slice is not supported.

3) Convert all Maxpool operations to Maxpool 2x2 opera-
tions for better optimization.

4) Convert all Unsample as a combination of Unsample
2x2 and Unsample 4x4 for better optimization.

Now, our model satisfies the condition with supported layers
by TIDL. But to make it work correctly, the model has to be
converted to ONNX.

E. ONNX model conversion

TIDL interface for conversion expects the model to be either
in tflite or ONNX format. For our case, we need to convert
our model to ONNX format. ONNX defines a common format
for representing deep learning models. This format consists of
a computational graph, where nodes represent operations, and
edges represent the flow of data.



After model conversion to ONNX, it is necessary to infer
shapes. The goal is to determine the shape of each tensor at
every point in the graph. The TIDL library will later use this
information.

F. TIDL conversion and test results

After all the preparation steps, we can successfully convert
the model with the TIDL. We compared 8-bit and 16-bit
quantization. Step 1, on average, takes 0.16 seconds for 8-
bit conversion and 0.19 for 16-bit conversion. As there was
no significant reduction in accuracy, we decided to use 8-bit
quantization. Compared to 1.09 seconds, it is 6.8 times faster!

VIII. SECOND STAGE OPTIMIZATION

A. DKD (Differentiable Keypoint Detection block)

We have significantly accelerated the first part of our model.
The second part of the model can also be optimized using
a different approach. A big part of the DKD block is Non-
maximum suppression (NMS). Almost all the time of which
is taken by Maxpool block. One of the possible optimizations
is to convert Maxpool operation to ONNX format. After doing
all the same operations with the converted Maxpool operation,
NMS time came from 0.25 to 0.05 seconds.

Further, we noticed that the algorithm used 2 iterations of
Maxpool to find more keypoints. We tested it with only one
iteration and found that the number of keypoints, on average,
increased by 4 keypoints. Testing this setup on accuracy, we
have not noticed any reductions compared to the 2-iteration
version. Time taken for NMS reduced from 0.05 seconds to
0.03.

B. Additional optimization

In addition, we cleaned the model from unnecessary copying
and declarations and reduced the overall model output time by
another 0.06 seconds.

IX. RESULTS

TABLE III
TIME FOR INFERENCE OF ALIKE (ALIKE-T) ON THE DEVICE AFTER THE

OPTIMIZATIONS.

Step 2: 0.35
Total time Step 1 Normalization: 0.29

0.51 0.16 DKD: 0.04 (NMS: 0.03)
Other: 0.02

Also, the normalization block takes a significant amount of
time for part 2 of the block. But when working with real-
time video, there are special TIDL plugins that will make
normalization. This library goes out of the scope of this
project, but we left it for general statistics.

After all manipulations, the performance of part 1 was in-
creased by 6.8 times, and the performance of part 2 was in-
creased by 1.67 times. The general time of execution changed
from 1.72s to 0.51s (see Table II, III ). The frame rate
increased from 0.58 to 1.97 frames per second, including
normalization. As was mentioned, the normalization part for
real-time video can also be optimized, so the frame rate will
be even higher.

X. CONCLUSION

In this project, we got an overall boost of 3.3 times! Certainly,
there are some other optimizations that can be done, but
they will not change the time of execution significantly.
In this project, the main optimization was using the Edge
AI TIDL library. Also, some memory and code manipula-
tion was done. Overall, a boost in performance enables us
to use this approach for real-time problems. The code of
the project is available at https://github.com/UCU-Pokemons/
Image-Matching-on-Edge.

REFERENCES

[Bal+17] Vassileios Balntas et al. “HPatches: A benchmark
and evaluation of handcrafted and learned local de-
scriptors”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017,
pp. 5173–5182.

[Zha+22] Xiaoming Zhao et al. “Alike: Accurate and
lightweight keypoint detection and descriptor ex-
traction”. In: IEEE Transactions on Multimedia
(2022).

[Zha+23] Xiaoming Zhao et al. “Aliked: A lighter keypoint
and descriptor extraction network via deformable
transformation”. In: IEEE Transactions on Instru-
mentation and Measurement (2023).

[Ins24] Texas Instruments. “TiDL EdgeAI repository
ReadME: https : / / github. com / TexasInstruments /
edgeai-tidl-tools”. In: (2024).

https://github.com/UCU-Pokemons/Image-Matching-on-Edge
https://github.com/UCU-Pokemons/Image-Matching-on-Edge
https://arxiv.org/pdf/1704.05939
https://arxiv.org/pdf/1704.05939
https://arxiv.org/pdf/1704.05939
https://arxiv.org/pdf/2112.02906.pdf
https://arxiv.org/pdf/2112.02906.pdf
https://arxiv.org/pdf/2112.02906.pdf
https://arxiv.org/pdf/2304.03608.pdf
https://arxiv.org/pdf/2304.03608.pdf
https://arxiv.org/pdf/2304.03608.pdf
https://github.com/TexasInstruments/edgeai-tidl-tools
https://github.com/TexasInstruments/edgeai-tidl-tools

	Introduction
	Experiental setup
	EdgeAI TIDL and optimization
	Problems with model optimization
	ALIKE
	Overall model structure
	 Differentiable keypoint detection
	Learning discriminative descriptor

	Metrics
	Model evaluation metrics
	Dataset

	ALIKE optimization on TI's device
	Different versions of ALIKE models
	Where to start
	Logical parts
	First stage optimization
	ONNX model conversion
	TIDL conversion and test results

	Second stage optimization
	DKD (Differentiable Keypoint Detection block)
	Additional optimization

	Results
	Conclusion

