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Abstract—This document describes our work on the Numerical
modeling of fluid behavior using the Smoothed Particle Hydro-
dynamics (SPH) method. In this project, we discuss the theory
of SPH and its implementation to simulate fluid behavior.

Index Terms—smoothed particle hydrodynamics, computa-
tional fluid dynamics, fast fixed-radius nearest neighbors, kernel
hydrodynamics

I. INTRODUCTION

The aim of this project is to simulate the fluid behavior.
Navier-Stokes equations are commonly used to describe fluids
mathematically. This is a nonlinear system of differential
equations that describes the flow of a fluid whose stress
depends linearly on flow velocity gradients and pressure.
These equations have no analytical solutions in general form,
so they are often used in computational fluid dynamics [4], [5].
However, these equations can be simplified by using different
approximations. In our project, we assume that the fluid is
incompressible. We also assume that the fluid is comprised
of individual particles, each with its own properties such
as mass, position, velocity, and density. Thus, the problem
for modeling fluid behavior comes down to calculating the
acceleration of each particle due to external forces and up-
dating its position over time. We use the Smoothed-particle
hydrodynamics (SPH) method for modeling. SPH is a particle-
based, mesh-free Lagrangian method (coordinates move with
the fluid in this method). This method is popular in many
fields of research, including but not limited to astrophysics,
ballistics, volcanology, and oceanography.

II. POSSIBLE APPROACHES

A. Methods of fluid modeling

1) Stable Fluids: The Stable Fluids approach enables the
simulation of fluid behaviors with numerical stability and
efficiency. The method employs discretization of the Navier-
Stokes equations, which govern fluid motion, into a grid-
based framework. Key components include the representation

of velocity and pressure fields, along with semi-Lagrangian
advection for fluid quantity transport. Notably, the term ”sta-
ble” underscores its robustness against numerical instabilities,
ensuring accurate results despite small perturbations or com-
putational errors. Implicit time integration techniques further
enhance stability, particularly for challenging scenarios. How-
ever, this method has notable limitations. One such drawback
is its computational cost, especially for high-resolution simu-
lations or complex fluid behaviors. Additionally, the method
struggles with accurately capturing turbulent flows, which
are prevalent in many real-world scenarios. These limitations
dictate careful consideration of simulation parameters and
trade-offs in practical applications, which are not suitable for
our project.

2) Lattice Boltzmann Method: The Lattice Boltzmann
Method (LBM), instead of directly solving the Navier-Stokes
equations, works at the mesoscopic level, using the lattice
structure to model fluid flow. In general, LBM simulates
the motion and collisions of fictitious particles in a lattice
grid. Through iterative collision and propagation steps, fluid
properties such as density and velocity change over time,
allowing for the understanding of complex fluid phenomena.
One of the ”pros” of LBM is its ability to handle complex
geometries and boundary conditions with relative ease. In
addition, LBM naturally accounts for multiphase and multi-
physics phenomena, making it suitable for a wide range of ap-
plications. However, there are some significant disadvantages
that can greatly complicate the simulation work: the method
can require substantial computational resources, particularly
for high-resolution simulations or scenarios involving turbulent
flows. To ensure accurate results, a careful selection of lattice
structures and collision models is required, which adds to the
complexity of the implementation.

3) Smoothed-particle hydrodynamics (SPH): Unlike grid-
based approaches, SPH represents the fluid as a collection of
particles that interact with each other based on a smoothed
kernel function. In SPH, each particle posesses properties
such as mass, velocity, and density. Interactions between



particles are determined by evaluating the kernel function,
which quantifies the influence of neighboring particles on each
particle’s properties. This allows SPH to accurately model
complex fluid behaviors, including free surfaces, fluid mixing,
and fluid-solid interactions. One of SPH’s notable ”pros”
is its ability to handle dynamic and deformable boundaries
without requiring complex mesh generation. Additionally, SPH
naturally accommodates simulations with irregular geometries
and moving boundaries, making it well-suited for applications
in astrophysics, engineering, and computer graphics. However,
SPH also has its limitations. One challenge is accurately
resolving discontinuities and sharp gradients in fluid proper-
ties, which can lead to numerical instabilities or inaccuracies,
particularly in high-speed or turbulent flows.

4) Conclusion: After weighing the pros and cons, smoothed
particle hydrodynamics (SPH) was selected for fluid modeling.
Despite the problems with numerical stability and computa-
tional requirements, SPH gives us unprecedented flexibility
in handling complex scenarios with dynamic boundaries and
deformable bodies. Its ability to accurately model fluid-solid
interactions and irregular geometries outweighs its limitations,
making it a very good choice for our project.

B. Methods of integration

The choice of a time integration scheme is an important
aspect of any transient fluid simulation. Several possible meth-
ods of time integration can be used, such as Euler integration,
Runge-Kutta, and Leap Frog.

The simplest is the Euler integration scheme, which updates
the state of each particle at each time step based on its current
velocity and acceleration. This integration can suffer from
numerical instability in simulations where forces change very
fast, or the behavior of particles is complicated (highly non-
linear).

Runge-Kutta methods use weighted averages of multiple
function evaluations to approximate the solution at each time
step. These methods come in various orders, with higher-
order methods offering better accuracy. However, they require
more computational resources. Thus, Runge-Kutta integration
is used in some SPH simulations only when accuracy is
critical.

For our simulation, we chose Leap Frog integration [6],
which is quite popular in such problems because it offers
better accuracy and stability than Euler’s and also requires
less computational resources than Runge-Kutta. Leap Frog is
a second-order accuracy scheme that calculates the positions
and velocities of particles at interleaved time points. Here are
the formulas for Leap Frog integration:

vi+1/2 = vi−1/2 + ai ∗∆t,

ri+1 = ri + vi+1/2 ∗∆t,

where vi is velocity of a particle at ith step, ∆t is time step,
and vi is a position of a particle at ith step.

III. THEORY OF THE SPH METHOD

A. Main idea

Calculations of most forces at play in the SPH framework
are done by sticking to the general formulas provided be-
low [1].

To find the value of the scalar field F (r) at any point, the
following formula is used:

F (r⃗i) =
∑
j

FjVjW (r⃗i − r⃗j , h),

where the subscript j iterates over all particles, r⃗j is the current
position of particle j, Vj is the volume of the particle, and h
is the support radius of the Kernel Function, (see below).

The gradient of the scalar field is given by:

∇F (r⃗i) =
∑
j

FjVj∇W (r⃗i − r⃗j , h),

and the Laplacian is:

∇2F (r⃗i) =
∑
j

FjVj∇2W (r⃗i − r⃗j , h).

The main idea of this project is to simulate fluid behaviour
in the 2-dimensional space using SPH method. This method
works by dividing the fluid into a set of particles. Firstly, we
have to set the mass of our particles, which will remain un-
changed till the end of the simulation. Then, we calculate and
update their physical parameters (density, viscosity, pressure
etc.) based on the surrounding conditions in each frame of the
simulation.

Fig. 1. Finite State Machine of the SPH algorithm.



B. Smoothing Kernels

As previously discussed, the SPH method represents a fluid
as a collection of particles with certain parameters. To compute
these parameters, we use smoothing kernels.

A kernel smoother is a statistical method used to estimate
a continuous function based on observed data. It works by
calculating a weighted average of neighboring points, where
the weights are determined by a mathematical function –
the kernel (also called smoothing kernel, kernel function).
Points closer to the point of interest have higher weights in
the calculation. Figure 2 is a schematic illustration of the
smoothing kernel function. The resulting estimated function
is smooth, and the degree of smoothness can be adjusted by
a single parameter.

Fig. 2. Schematic illustration of an SPH smoothing kernel function [10].

The algorithm requires three different kernels [1]:
• The Polynomial Kernel.
• The Spiky Kernel.
• The Viscosity Kernel.
Each kernel has a specific mathematical formulation that

makes it suitable for calculating a particular type of force or
interaction between particles in the SPH simulation.

There are also a few general mathematical constraints on
smoothing kernels: ∫

Ω

W (r⃗, h)dΩ = 1,

W (r⃗, h) = 0, ∥r⃗∥ ≥ h,

lim
h→0

W (r⃗, h) = δ(r⃗),

where δ is the Dirac delta function:

δ(r⃗) =

{
∞ ∥r⃗∥ = 0

0 otherwise
,

and Ω is the computational domain where simulations take
place. It includes the whole region where fluid properties
are calculated and smoothed using kernel functions. These
functions, W (r⃗, h), are normalized over Ω to ensure accurate
and consistent property approximations.

1) The Polynomial Kernel: The polynomial kernel
smoothly distributes quantities over space, making it perfect
for calculating density and surface tension force. This formula
is the default kernel formula suggested by [8].

The Polynomial Kernel:

Wpoly(r⃗, h) = A

{
(h2 − ∥r⃗∥2)3 0 ≤ ∥r⃗∥ ≤ h

0 ∥r⃗∥ > h
,

where A can be found out using the condition:∫
Ω

WpolydΩ = 1,

resulting in:

A =
315

64πh9
for 3D,

A =
4

πh8
for 2D.

The Polynomial Gradient:

∇Wpoly = −Br⃗(h2 − ∥r⃗∥2)2,

B =
945

32πh9
for 3D,

B =
24

πh8
for 2D.

The Polynomial Laplacian:

∇2Wpoly = −C · (h2 − ∥r⃗∥2)(3h2 − 7∥r⃗∥2),

C =
945

32πh9
for 3D,

C =
24

πh8
for 2D.

2) The Spiky Kernel: We will use the spiky kernel to
calculate the pressure force. It is needed to keep particles from
bunching up too much.

The Spiky Kernel:

Wspiky(r⃗, h) = A

{
(h− ∥r⃗∥)3 0 ≤ ∥r⃗∥ ≤ h

0 ∥r⃗∥ > h
,

where A can be found out using the condition:∫
Ω

WspikydΩ = 1,

resulting in:

A =
15

πh6
for 3D,

A =
10

πh5
for 2D.

The Spiky Gradient:

∇Wspiky = −B · r⃗

∥r⃗∥
(h− ∥r⃗∥)2,

B =
45

πh6
for 3D,

B =
30

πh5
for 2D.



The Spiky Laplacian:

∇2Wspiky = −C · (h− ∥r⃗∥)(h− 2∥r⃗∥)/∥r⃗∥,

C =
90

πh6
for 3D,

C =
60

πh5
for 2D.

3) The Viscosity Kernel: The viscosity kernel simulates the
internal frictional forces, making it perfect for calculating the
viscous force.

The Viscosity Kernel:

Wvisc(r⃗, h) = A

{
−∥r⃗∥3

2h3 + ∥r⃗∥2

h2 + h
2∥r⃗∥ − 1 0 ≤ ∥r⃗∥ ≤ h

0 ∥r⃗∥ > h
,

where A can be found out using the condition:∫
Ω

WviscdΩ = 1,

resulting in:

A =
15

2πh3
for 3D,

A =
10

3πh2
for 2D.

The Viscosity Gradient:

∇Wvisc = −Br⃗

(
−3∥r⃗∥

2h3
+

2

h2
− h

2∥r⃗∥3

)
,

B =
15

2πh3
for 3D,

B =
10

πh2
for 2D.

The Viscosity Laplacian:

∇2Wvisc = −C · (h− ∥r⃗∥),

C =
45

2πh6
for 3D,

C =
20

πh5
for 2D.

C. Forces in play

So as to bring the simulation to life, the forces acting be-
tween particles must be accurately represented in mathematical
notions and then implemented in code. In particular, the forces
featured in our simulation are described by the following
formulae [1].

1) Gravity: The formula of gravity is quite straightforward:

fi = ρi · g⃗,

where g⃗ is the gravitational acceleration, and ρi represents the
density of particle i, expressing the mass per unit volume of
the particle or the medium in which it resides.

2) Surface Tension: The formula of surface tension, on the
contrary, is quite complicated:

fi = −σ ∗ ∇2cs ∗
n

|n|
,

where −∇2cs
|n| is the divergence of the surface normal that

gives the curvature of the surface, σ – the coefficient of
surface tension, ∇2cs – the Laplacian of the color field cs,
indicating the change in intensity of the color field in space,
corresponding to changes in the curvature of the surface. The
n is the gradient of the color field cs that is used to find the
surface of the fluid and is given by:

cs(r⃗) =
∑
j

mj

ρj
∗Wpoly(r⃗i − r⃗j , h).

3) Viscosity: The viscosity is given by:

fi = −α ∗
∑
j

∗mj ∗
v⃗ij · r⃗ij
|r⃗ij |

∗ ∇Wvisc(r⃗i − r⃗j , h),

where α is the viscosity coefficient [9].
4) Pressure: The pressure is calculated in the following

way:

fi = B[(
ρ

ρ0
)γ − 1],

which is known as Cole equation of state. However, in our
implementation, we resort to a more generalized version:

fi = B

(
p− p0
ρ0

)
,

where γ is taken to be one and B
ρ0

can be considered as a single
pressure coefficient. Also, the pressure is later multiplied by
the appropriate kernel value.

5) Density: Density, which is used in other formulas, is
obtained with the following:

ρi(r⃗i) =
∑
j

mj ∗Wpoly(r⃗i − r⃗j , h).

IV. OPTIMIZATION

The idea mentioned in previous sections is great for small
simulations. One problem that arises when running a more
massive simulation with greater number of particles is the time
needed to update the states of the particles in action.

In our initial implementation, we iterated through all parti-
cles to compute interactions with just one particle at a time.
This resulted in n(n− 1) total interactions conducted in each
simulation frame. We deemed this method inefficient because
particles mainly interact with those that are nearest to them.
Therefore, we decided to eliminate unnecessary computations
by ignoring particles too far to influence the particle in
question significantly.



A. Interaction optimization

A lot of efficient interaction optimization techniques (for
example, object bounding boxes in game engines) use a two-
phase approach: a broad phase followed by a narrow phase.
The output of the broad phase is a set of pairs of objects that
potentially interact. This phase aims to quickly identify and
eliminate pairs of objects that are definitely not interacting in
the current frame, allowing the more computationally intensive
narrow phase to focus only on a small number of such
pairs [3].

The main task of the narrow phase involves accurate com-
putation of the intricacies of the interactions and rejection of
those not filtered out by the broad phase. Essentially, this phase
has been discussed in the earlier sections: a long process of
computing individual forces and corresponding kernel values
may produce meaningful results for some forces and zeroes
for others.

In the case of fluid simulation, it makes sense to split the
space into a grid and assign (“sort”) particles to individual cells
so that later on in the narrow phase interaction, computations
are conducted only for particles that are at most n cells away
from each other.

B. The broad phase

Fig. 3. An Example of 2D Spatial Subdivision of Four Particles [3].

1) Spatial subdivision: Spatial subdivision partitions space
into a grid, such that a grid cell is at least as large as the
largest object (in our case, all particles are equal). Then, we
assign to each cell the ”list” of all particles whose centers are
within that cell.

For example, in Figure 3, Cell 1 includes particles O1, O2;
Cell 2 – none; Cell 3 – particle O4; Cell 4 – none; Cell 5 –
particle O3; Cell 6 – none.

2) Sorting algorithms: The choice of an efficient sorting
algorithm determines how quickly we can build a list of
particles belonging to individual cells.

One possible sorting algorithm is the radix sort. Radix sort
sorts by the 32-bit cell IDs. An important property of the radix
sort is that it sorts the elements iteratively by their digits (or
tuples of bits) from the least to most significant, so it takes
multiple passes to complete [3], [7].

As it can be seen from Figure 4, we have a set of particles
and cells. The first steps are finding the largest cell ID in order
to figure out how many passes there will be and determining
where the center of each particle lies (which can be done at
the end of the previous frame). Then, we iteratively sort the
particles by the digits (or tuples of them) of cell IDs associated
with them in the following way: first, we calculate the total
number of particles sharing the same digit (tuple) at the current
iteration’s position of cell ID, then for each possible digit value
we sum up the number of particles with current digit values
smaller than it (”prefix sum” or ”partial sum”), thus obtaining
an offset for its particles and finally we put the particles’ IDs
from input buffer to indices in the output buffer based on
the prefix sum of the corresponding digit value. The above is
repeated as long as we can shift the digit (tuple) position of
cell IDs to the left.

In Figure 5, we have an example of counting sort. It works
in a way similar to that of radix sort but takes only one pass to
complete since, instead of radices, it uses entire cell IDs, thus
eliminating the need to guarantee stability between passes.

3) Implementation: We decided to employ counting sort
since radix sort’s stability is rather difficult to guarantee in
the SIMT (Single instruction, multiple threads, used by GPU)
context. Our sorting implementation uses five buffers in total
for pairs of type ⟨particleID; cellID⟩, number of particles
in a cell, prefix sums of the cells, the pairs ordered by cell
ID, and specification where in the output array the pairs of a
given cell begin.

Fig. 4. Example of Radix Sort from [7].

V. RESULTS

The animation of our simulation involving 4800 particles
can be seen in the following link to Google Drive. As can be
observed from the performance panel, the simulation involving
sorting tends to be more stable and exhibits higher maximum
values of frame rate than the one without sorting.

VI. CONCLUSION

In this project, we modelled fluid behavior with the
Smoothed Particle Hydrodynamics method. During our work,

https://drive.google.com/drive/folders/12fO5KD-G_-5tSxyLOMyqr-sR6EBmioQ3?usp=sharing


Fig. 5. Example of Counting Sort from [7]

we leveraged the Leap Frog method for integration. However,
while working on optimization, we were perplexed when
implementing the sorting algorithm. First, we tried to use
radix sort, but it turned out too hard to guarantee its stability
and efficiency in a parallel environment at the same time.
So we implemented the counting sort instead. We also got
more familiar with Unity Game Engine, the principles of

GPU computations, and shader programming. The code of the
project is available at GitHub repository.
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