
Development of High–Performance Methods for
Modeling Gravitational Interaction on Large Scales

Roman Naumenko
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

roman.naumenko@ucu.edu.ua

Anastasiia Beheni
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

anastasiia.beheni@ucu.edu.ua

Olesia Omelchuk
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

olesia.omelchuk@ucu.edu.ua

Sofiia Folvarochna
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

sofiia.folvarochna@ucu.edu.ua

Mykhailo Moroz
Lead 3D Research Engineer

ZibraAI
Kyiv, Ukraine

michael08840884@gmail.com

Abstract—The project demonstrates the implementation of
high-performance methods for modeling gravitational interaction
in a dynamic system with a large number of homogeneous parti-
cles in three-dimensional space. To optimize the calculations, we
approximated the task’s solution using the Barnes-Hut algorithm.
It groups nearby bodies and approximates them as a single body.

For effective parallel building of the BVH tree that minimizes
divergence and maximizes occupancy, we used Linear BVH
construction that first chooses the order in which the leaf nodes
are stored in the tree and then generates the internal nodes in
a way that respects this order. We choose that order using the
space-filling z-order curve that associates each particle with the
corresponding Morton code depending on its position in space.
Using sorted with Bitonic sort Morton codes, we are able to build
a BVH tree processing each node in parallel.

To maximize and utilize the possible substantial gains for the
mentioned algorithms in a parallel setting, we perform all the
calculations on the Graphics Processing Unit (GPU). We used
Open Graphics Library (OpenGL) and the compute shaders
written in Graphics Library Shader Language (GLSL) to interact
with the GPU.

Index Terms—N-body simulation, OpenGL, compute shaders,
GLSL, Barnes-Hut Algorithm, BVH Tree, Bitonic Sort, Morton
Codes, Z-order curve, GPU

I. INTRODUCTION

Direct computations of gravitational interactions between
particles require a number of calculations proportional to the
square of the number of particles. For the effective solution
of this problem for millions of particles, not only a large
computation power is needed, but also methods that make it
possible to speed up the solution. Such a task is usually solved
on large clusters [1] of computers with special algorithms that
allow simulating billions of particles. The trivial approach of
calculating the gravitational interactions of each particle with
every other requires an unacceptably large computation power.

This project is dedicated to implementing high-performance
methods for solving this task in three-dimensional space.
It shows the level of acceleration we achieved using the
Barnes-Hut algorithm on the way to simulating gravitational
interaction for one million homogeneous particles. This work

mainly concentrates on the methods of effective BVH tree
construction, which is the basis of the Barnes-Hut algorithm.

II. OVERVIEW OF APPROACHES

A. Brute-force algorithm

The brute-force algorithm has O(n2), time complexity,
where n is the number of particles because it involves comput-
ing the gravitational forces between all pairs of particles and
updating their positions and velocities over small–time steps.
Implementing it is simple, but more efficient approaches for
large-scale simulations exist.

B. Particle mesh

Particle Mesh (PM) is another computational method for
determining the forces in a system of particles. A system of
particles is converted into a grid of density values, and forces
are applied to each particle based on what cell it is in and
where in the cell it lies.

The potential energy of each cell can be determined from
the differential form of Gauss’s law, which gives rise to
the Poisson equation that is easily solved after applying the
Fourier transform:

∇2ϕ = 4πGρ,

where ϕ is the gravitational potential, G is the gravitational
constant, and ρ is the local mass density.

Then, we compute for each body the resulting gravitational
force:

g = −∇ϕ.

PM does not model close interaction between particles well,
but it is much faster than a trivial approach [2], [3]

C. P3M

In addition to the PM calculation, P3M (P 3M ) uses a
straight particle-particle sum between nearby particles. It is
more difficult to implement but does not have better accuracy
than the Barnes-Hut algorithm [3].



D. Barnes-Hut algorithm

The algorithm stores groups of particles in a BVH tree.
Each leaf node represents a single particle. Each internal
node represents the part of the three-dimensional space and
stores the center-of-mass and the total mass of all its children
particles that are in that part. If the group is sufficiently far
away, we can approximate its gravitational effects using its
center of mass. If two bodies have positions (x1, y1) and
(x2, y2), and masses m1 and m2, then their total mass m
and center of mass (x, y) are given by [4]:

m = m1 +m2

x =
x1 ∗m1 + x2 ∗m2

m

y =
y1 ∗m1 + y2 ∗m2

m

III. ALGORITHM PARALLELIZATION

We decided to choose Barnes-Hut as it is easily understand-
able from a physical point of view, and we could concentrate
on the parallelization we want to master through this project.
Effective tree construction is essential because, ideally, we
need to reconstruct the tree in every frame as the particles
move.

A. Morton codes

All objects are sorted along a space-filling Z-order curve
(Fig. 1) to locate them close to each other in 3D space and
reside nearby in the hierarchy of the tree.

Fig. 1. Z-order curve [5].

The Z-order curve is defined in terms of Morton codes (Fig.
2). First, we take the fractional part of the binary fixed-point
representation of the normalized coordinates of the given 3D
point (each coordinate is in the range [0,1]) and expand it by
inserting two gaps after each bit. The next step is to interleave
the bits of all three coordinates together to form a single binary
number, assign them to each object, and sort these objects

accordingly. In this way, we effectively step along the Z-order
curve in 3D. For this project, we used 30-bit Morton code.

Fig. 2. Calculating Morton codes and 2D representation of Z-order curve [6].

B. Bitonic sort for Morton codes

To sort Morton codes, we use a bitonic sorting network (a
sequence of compare-and-swap operations), as it maps well
onto parallel hardware and has constant and relatively low–
performance complexity O(nlog2(n)).

To show how the bitonic sort works, a diagram of a
relatively small sorting network is shown in Fig. 3.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 3. Sorting diagram [7].

Each worker thread performs a compare-and-swap operation
on the pair of sortable elements with indices marked with
the vertical line’s start and end points. Each execution step is
represented as a block of a different color and follows a distinct
pattern for how each worker thread grabs pairs of sortable
elements:

1) Green block (flip): doubles in height until it reaches a
total number of elements. Each sortable element index
pair can be labeled as T0,...,t, where t represents the
worker thread index to which the pair is assigned:

Tt = [t : h− t− 1], for t = 0, . . . , h/2.

2) Yellow block (disperse): after each green block, there
is a cascade of yellow blocks, each half the previous
height, until its height spans only two sortable elements.
Each sortable element index pair can be labeled as
T0,...,t, where t represents the worker thread index to
which the pair is assigned:

Tt = [t : t+ h/2], for t = 0, . . . , h/2.

The next step is to define those rules for the total number
of sortable elements n.



1) The rule for a row of green block elements:

Tt = [q+(t mod
h

2
) : q+h−(t mod

h

2
)−1], for t = 0, . . . , n/2,

2) The rule for a row of yellow block elements:

Tt = [q+(t mod
h

2
) : q+(t mod

h

2
)+

h

2
], for t = 0, . . . , n/2,

In the expressions above, (t mod h
2 ) limits the output for the

term for any given t to 0, . . . , h/2; q = (⌊ 2th ) ∗ h represents
the offset.

The algorithm relies on the concept of a bitonic sequence,
which is a sequence that first increases and then decreases
or vice versa. We recursively sort the input sequence into
a bitonic sequence, then repeatedly merge pairs of bitonic
sequences to form larger ones. Because of this, the algorithm
continues to establish partial order among the elements, and
then the entire sequence becomes sorted.

C. Building tree

Tero Karras first suggested the algorithm we use for parallel
radix tree construction in 2012 [6]. We used this approach as a
base for constructing our BVH tree. The approach associates
a Morton code with each particle, arranging these codes in
a sorted manner and creating a hierarchical tree structure
where each subtree corresponds to a consecutive range of
sorted particles. This sorting mechanism effectively groups
together primitives that are spatially close to each other in three
dimensions, ensuring their proximity within the resulting tree.
Utilizing the fact that any binary tree with N leaf nodes always
has exactly N − 1 internal nodes, we can generate the entire
hierarchy, as illustrated by the pseudocode in Algorithm 1. The
algorithm begins by creating an array of N-1 internal nodes
and processes them concurrently. Each thread performs the
following steps: first, it identifies the object range associated
with its node using a clever technique. Then, it proceeds with
the regular range-splitting process. Lastly, it assigns children
to the node based on their respective sub-ranges. If a sub-
range contains only one object, the child node is a leaf, and
the corresponding leaf node is directly referenced. Otherwise,
another internal node from the array is referenced. An example
can be seen in Fig. 4.

D. Traversing tree

To calculate the total force on the exact particle A, we have
to traverse the constructed tree starting from the root:

1) If the current node is a leaf node (represents the exact
particle) → calculate its force on A

2) If the current node is an internal node (represents a
group of particles) → calculate the ratio s/d (s – the
longest side of the bounding box of that internal node,
d – the distance between A and the center-of-mass of
the internal node) and compare it with the threshold θ
(we take θ = 0.5 as it is commonly used in practice):

• if s/d < θ (the internal node is sufficiently far away
from A to be considered as a single body): take the

Fig. 4. Example of node layout. Each internal node covers a linear range of
keys, which it partitions into two subranges according to their first differing
bit.

total mass of that internal node and calculate its
force on A

• otherwise, recursively traverse each of the current
node’s children

IV. VISUALIZATION AND CALCULATIONS ON GPU

For visualization and access to GPU, we used OpenGL
– API (a specification to be more precise), which allows
developers to interact with the GPU to render and perform cal-
culations. It provides a high-performance and parallel process-
ing environment through programmable shaders, customizable
pipelines, and features for GPU computing. The OpenGL
specification specifies exactly what the result/output of each
function should be and how it should perform.

A. Shader graphics pipeline

In OpenGL, everything is in 3D space, but our screen is
in 2D. To transform 3D coordinates into 2D colored pixels,
OpenGL provides a graphics pipeline consisting of shaders –
programs running on the GPU for each pipeline step.

1) Vertex shader: sets the position of each vertex, taking
into account camera rotation, projection, and perspec-
tive.

2) Fragment shader, which runs for each fragment, calcu-
lates the final color of each pixel.

B. Compute shaders

To perform our algorithm efficiently, we will use GPU not
only for graphics but also for computational tasks: so-called
General Purpose Computing on Graphics Processing Units
(GPGPU), as GPU performs floating-point calculations much
faster than current CPU.

This can be done using compute shaders, which are general-
purpose shaders that are not a part of the graphics pipeline.
We can define the number of executions and initiate them by
ourselves using OpenGL functions. If other shaders mentioned
above ran per vertex or fragment, compute shaders work on
the so-called ”work item.” The compute space of the compute
shader is defined by the workgroup, which consists of some



Algorithm 1 Pseudocode for constructing a binary radix tree
1: for each internal node with index i ∈ [0, n−2] in parallel

do
2: d← sign(δ(i, i+ 1)− δ(i, i− 1))
3: δmin ← δ(i, i− d)
4: lmax ← 2
5: while δ(i, i+ lmax ∗ d) > δmin do
6: lmax ← lmax ∗ 2
7: end while
8: l← 0
9: for t← {lmax/2, lmax/4, ..., 1} do

10: if δ(i, i+ (l + t)) ∗ d > δmin then
11: l← l + t
12: end if
13: end for
14: j ← i+ l ∗ d
15: δnode ← δ(i, j)
16: s← 0
17: for t← {⌈l/2⌉, ⌈l/4⌉, .., 1} do
18: if δ(i, i+ (s+ t) ∗ d) > δnode then
19: s← s+ t
20: end if
21: end for
22: γ ← i+ s ∗ d+min(d, 0)
23: if min(i, j) = γ then
24: left← Lγ

25: else
26: left← Iγ
27: end if
28: if max(i, j) = γ + 1 then
29: right← Lγ+1

30: else
31: right← Iγ+1

32: end if
33: Ii ← (left, right)
34: end for

number of compute shader invocations (for each, a uniquely
determined set of inputs is defined).

To perform all the necessary calculations on GPU, a few
different compute shaders are used:

1) Morton codes: each invocation (one for every particle)
finds its corresponding Morton code and writes it into
the following buffer.

2) Bitonic sort: each invocation performs some part of the
sorting algorithm to sort the buffer with Morton codes.

3) Building tree: each invocation corresponds to one inter-
nal node – defines its children, calculates the total mass,
the center of mass, and the bounding box metric used
in the tree traversing (it was defined as the longest side
of the bounding box).

4) Traversing tree: each invocation traverses the constructed
tree for the corresponding leaf node (exact particle) and
calculates the total force, position, and speed change.

V. RESULTS

A. Interface
After executing the program, the user can see the menu

where they can set up initial conditions for the simulation
(Fig. 5).

• The speed, the mass of particles, and the building tree
rate can be set up using a slider. There are buttons
”Simulation” and ”Rotation” to run or stop the simulation
and the rotation accordingly.

• The number of particles is defined by ”Start count sqrt.”.
It will equal ”Start count sqrt” * ”Start count sqrt”.

• The button ”Enter fly mode” allows the user to rotate the
camera in different directions.

• The button ”Regenerate” regenerates the simulation with
new initial conditions.

Fig. 5. Interface of the program.

For more details, see the repository of our project:
https://github.com/beheni/N-BodySimulation.

B. Optimization steps
All tests were run on the computer with following parame-

ters:
• CPU: Intel i5-10210U,
• GPU: NVIDIA GeForce MX350.

TABLE I
COMPARISON OF DIFFERENT APPROACHES

Approach Number of particles FPS
Brut-force on CPU 1000 30
Brut-force on GPU 16 384 50
Barnes-Hut algorithm 262 144 15
Barnes-Hut algorithm
with rebuilding tree every
five frames

262 144 50

Barnes-Hut algorithm
with rebuilding tree every
five frames

1 048 576 15

VI. CONCLUSION

Barnes-Hut Algorithm is a practical approach to modeling
gravitational interaction on large scales. It allows for improv-
ing computational efficiency while still providing reasonably
accurate results. We achieved 50 FPS for 262 144 particles,
but the FPS for 1 048 576 is still low (15 FPS).

https://github.com/beheni/N-BodySimulation


REFERENCES

[1] T. Hamada and K. Nitadori, “190 tflops astrophysical n-body simulation
on a cluster of gpus,” in SC ’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2010, pp. 1–9.

[2] C. to Wikimedia projects, “Particle mesh,” Jul 2022. [Online]. Available:
https://en.wikipedia.org/wiki/Particle mesh

[3] R. Reusser, “2d (non-physical) n-body gravity with poisson’s equation,”
Mar 2023. [Online]. Available: https://observablehq.com/@rreusser/
2d-n-body-gravity-with-poissons-equation

[4] [Online]. Available: https://www.cs.princeton.edu/courses/archive/fall04/
cos126/assignments/barnes-hut.html

[5] C. to Wikimedia projects, “Z-order curve,” May 2023. [Online].
Available: https://en.wikipedia.org/wiki/Z-order curve

[6] T. Karras, “Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees,” Jun 2012. [Online]. Avail-
able: https://developer.nvidia.com/blog/parallelforall/wpcontent/uploads/
2012/11/karras2012hpg paper.pdf

[7] “Implementing bitonic merge sort in vulkan compute.” [Online].
Available: https://poniesandlight.co.uk/reflect/bitonic merge sort/

https://en.wikipedia.org/wiki/Particle_mesh
https://observablehq.com/@rreusser/2d-n-body-gravity-with-poissons-equation
https://observablehq.com/@rreusser/2d-n-body-gravity-with-poissons-equation
https://www.cs.princeton.edu/courses/archive/fall04/cos126/assignments/barnes-hut.html
https://www.cs.princeton.edu/courses/archive/fall04/cos126/assignments/barnes-hut.html
https://en.wikipedia.org/wiki/Z-order_curve
https://developer.nvidia.com/blog/parallelforall/ wpcontent/uploads/2012/11/karras2012hpg_paper.pdf
https://developer.nvidia.com/blog/parallelforall/ wpcontent/uploads/2012/11/karras2012hpg_paper.pdf
https://poniesandlight.co.uk/reflect/bitonic_merge_sort/

	Introduction
	Overview of approaches
	Brute-force algorithm
	Particle mesh
	P3M
	Barnes-Hut algorithm

	Algorithm parallelization
	Morton codes
	Bitonic sort for Morton codes
	Building tree
	Traversing tree

	Visualization and calculations on GPU
	Shader graphics pipeline
	Compute shaders

	Results
	Interface
	Optimization steps

	Conclusion
	References

