
Concurrent Real-Time Ray Traycer
Andrii Yaroshevych∗, Pavlo Kryven∗, Oleksandr Shchur∗

Ostap Trush∗ †
∗ Faculty of Applied Sciences of Ukrainian Catholic University, L’viv, Ukraine

† Our mentor

Abstract—This project aimed to create a real-time ray tracer
program on the CPU, utilizing the wide possibilities for paral-
lelization. Blinn-Phong [1] reflection model is used as a backbone
of lighting effects. Ray-objects intersection testing is conducted
using the Möller–Trumbore algorithm [2] for triangles and simple
linear algebra operations for plains, spheres, and ellipses. Global
and local view concepts are introduced to implement the 3D
object sizing, rotation, and positioning. The camera obscura
model is used to reproduce the properties of the camera, such as
field of view and perspective. As expected, the overall conclusion
is that the CPU is insufficient to perform a high-resolution
real-time rendering. However, GPU rendering also had some
downsides [3], so the investigated problem is still relevant.

I. INTRODUCTION

Ray tracing is a fundamental technique in computer vision
and computer graphics. The key concept of ray tracing is the
behavior simulation of light in a virtual 3D environment by
tracing rays of light from a virtual camera into the scene.
It involves casting rays from the camera’s viewpoint and
calculating their intersections with objects in the scene to
determine how they interact with the objects and contribute
to the final image. There are also alternative ways to render
images, such as rasterization [4] and ray casting [5], each
with its own benefits and downsides. This project focuses
on the concurrent real-time ray tracer CPU program. As
the programming language, C++ was chosen. The auxiliary
libraries used were SDL2 (handling the window creation and
management) and GLM (the mathematical backbone of all
computations). The primary purpose of the program is to
render static scenes; however, with minimal modifications, it
is easy to achieve the dynamic.

II. ARCHITECTURE AND IMPLEMENTATION DETAILS

The program architecture consists of several processing
stages. All of them, except the scene setup, are repeated in
each frame, as they are required to produce the updated image.

1) Scene setup. In this stage, the 3D objects in the scene
are defined using linear algebra operations such as
matrix transformations, which can be used to position,
orient, and scale the objects in the scene. A few object
types are implemented: sphere, plane, triangle, and cube.
The files with a ”.obj” format are supported, allowing
meshes to be used. The camera position and orientation
are also defined using linear algebra operations.

2) Ray generation. For each pixel in the image, a ray is
generated from the camera position and direction. The
camera obscura model is used, with a screen located

some distance from the camera, allowing for setting the
field of view.

3) Intersection testing. The generated ray is tested for
intersection with each object in the scene, using different
methods depending on the object type. For spheres,
ellipses, and planes, the transformation matrices and
elementary mathematical operations are used. Testing
mesh and triangle intersections additionally involves the
Möller–Trumbore algorithm. If the intersection happens,
the result of this step is the intersection point and normal
vector of the intersected object.

4) Lighting and shading. After obtaining the intersection
point and normal vector of an object, the lighting and
shading effects are calculated. For this purpose, the
Blinn-Phong model is used, involving utilizing linear
algebra operations to determine the direction and inten-
sity of the light rays, along with considering the material
properties of the object.

5) Color computation. Based on the previous stage results,
the color of the object at the intersection point is
computed.

6) Image rendering The computed colors for each object
in the scene are combined to generate the final image,
which is displayed on the screen using the SDL2 library.

Such program structure allows the utilization of embarrass-
ing parallelism in its functioning. It is implemented using the
Threading Building Block function tbb::parallel for.

For optimization purposes, the project conventions were
designed, such as normals are always normalized and light
rays are kept in the direction of the light source.

III. THEORETICAL FOUNDATION FOR USED ALGORITHMS

A. Vector operations

Vectors are used to represent the position and orientation
of objects in the scene, as well as the direction of the rays
being traced. Vector operations, such as dot product and
cross product, are used to calculate the angles, distances,
and other properties needed for intersection tests and lighting
calculations.

B. Matrix transformations

Matrices are used to represent transformations, such as
rotation, translation, and scaling, that can be applied to 3D
objects to change their orientation, position, and size in the
scene. They can also be used to define the position and
orientation of the camera in the scene. Matrices are also

used to transform objects from their local coordinate systems
to the global coordinate system of the scene, as well as to
transform rays from the camera’s coordinate system to the
global coordinate system.

C. Intersection tests

In ray tracing, the algorithm needs to determine which
objects in the scene a ray intersects with. This is done
by performing intersection tests between the ray and each
object in the scene. To perform these tests efficiently, linear
algebra techniques such as dot product, cross product, and
matrix transformations are used to calculate the position and
orientation of the objects and the direction and position of the
rays.

The concrete algorithm used in this project is the Möller-
Trumbore algorithm [2] for checking intersections with trian-
gles.

This method is based on the idea of representing a triangle
as a plane in 3D space and then checking whether the
ray intersects that plane. If the ray intersects the plane, the
algorithm then checks whether the point of intersection lies
within the triangle itself. The mathematical foundation is the
following:

Point T (u, v), on a triangle is given by:

T (u, v) = (1− u− v)V0 + uV1 + vV2,

where (u, v) are the barycentric coordinates which must fulfill
u ≥ 0, v ≥ 0 and u + v ≤ 1. Computing the intersection
between the ray, R(t), and the triangle, T (u, v), is equivalent
to R(t) = T (u, v), which yields:

O + tD = (1− u− v)V0 + uV1 + vV2.

Rearranging the terms gives:

[
−D, V1 − V0, V2 − V0

] t
u
v

 = O − V0.

This means the barycentric coordinates (u, v) and the distance,
t, from the ray origin to the intersection point can be found
by solving the linear system of equations above.

The above can be thought of geometrically as translating
the triangle to the origin and transforming it to a unit triangle
in y&z with the ray direction aligned with x, as illustrated in
Fig 1 (where M = [−D,V1 − V0, V2 − V0] is the matrix in
the previous equation).

Denoting E1 = V1−V0, E2 = V2−V0 and T = O−V0, the
solution to the equation is obtained by using Cramer’s rule:t

u
v

 =
1∣∣−D1, E1, E2

∣∣
 T,E1, E2

−D,T,E2

−D,E1, T

 .

We know that |A,B,C| = −(A×C) ·B = −(C ×B) ·A.
The equation above could, therefore be rewritten as:t
u
v

 =
1

(D × E2) · E1

(T × E1) · E2

(D × E2) · T
(T × E1) ·D

 =
1

P · E1

Q · E2

P · T
Q ·D

 ,

Figure 1: Translation and change of base of the ray origin [2].

where P = (D × E2) and Q = T × E1. To speed up the
computations, one can save and reuse these factors.

D. Lighting model

In our project, we used the Blinn–Phong model. This
lighting model is a widely used shading model in computer
graphics that approximates the interaction of light with sur-
faces. It calculates the intensity of light reflected from a surface
based on its material properties and the position of the viewer.

The model takes into account three components: ambient,
diffuse, and specular lighting. Each component contributes to
the final color of the surface.

• Ambient Lighting: The ambient component represents
the overall ambient light in the scene that uniformly
illuminates all objects. It provides a base level of illumi-
nation regardless of the surface’s orientation or position
relative to light sources. The ambient term is typically a
constant color value multiplied by the ambient reflection
coefficient of the material.

• Diffuse Lighting: The diffuse component accounts for
light that is scattered equally in all directions by a surface.
It depends on the angle between the surface normal and
the direction of the incoming light. Surfaces facing the
light source directly receive more light, resulting in a
brighter appearance, while surfaces facing away receive
less light. The diffuse term is calculated by multiplying
the incoming light intensity, the diffuse reflection coef-
ficient of the material, and the dot product between the
surface normal and the light direction.

• Specular Lighting: The specular component simulates the
reflection of light off shiny or glossy surfaces. It creates
highlights or specular reflections that appear as bright
spots on the surface. The specular term is determined
by the dot product between the reflection vector and
the viewer’s direction, raised to a power defined by the
shininess or specular exponent of the material.

In Phong shading, one must continually recalculate the dot
product R ·V between a viewer (V) and the beam from a light
source (L) reflected (R) on a surface.

The Blinn-Phong model is similar but approaches the
specular model slightly differently. Here, we use a so-called
halfway vector instead of a reflection vector, calculated as
a unit vector in the middle between the view direction and
the light direction. The less difference between this halfway

R

V
N

H

L

Figure 2: Vectors for calculating Phong and Blinn–Phong
shading [6].

vector and the surface’s normal vector, the higher the specular
contribution.

One calculates a halfway vector between the viewer and
light-source vectors as:

H =
L+ V

∥L+ V ∥
.

R ·V can be replaced with N ·H , where N is the normalized
surface normal. In the above equation, L and V are both
normalized vectors, and H is a solution to the equation
V = PH(−L), where PH is the Householder matrix that
reflects a point in the hyperplane that contains the origin and
has the normal H .

The Phong model always gives round reflections for a flat
surface, but the Blinn–Phong reflections are more like an
ellipse when the view angle is large. This can be compared
to the case where the sun is reflected in the sea close to the
horizon.

Figure 3: Blinn-Phong comparison. [6]

IV. PERFORMANCE ANALYSIS AND RESULTS

While working on the project, many tests were conducted
to find the fastest and most suitable solutions for problems
that arose. Some methods were rejected before implementa-
tion, and others were removed as such, which proved to be
ineffective for our applications.

A. Parallelization

While parallelizing our application, the various tools were
tested. The first implementation used the custom thread pool,
which, as expected, gave the worst performance. It also intro-
duced the problems with vertical synchronization (aka VSync).
The next solution tested was the boost::asio::thread pool
provided by the Boost library, and it proved to be a more
effective tool. However, the best results were achieved with
tbb::parallel for by TBB. You can see our results for a test
scene in Table I. Note that the program pipeline generally
does not depend on the scene conditions, so we consider this
single case sufficient to analyze and compare various tools’
performance.

Table I: Tests results: 16 logical threads.

Method FPS Frame Time, ms
sequential 19.2 52

naive thread pool 55.2 18.1
boost thread pool 60.9 16.4
tbb::parallel for 62.0 16.1

One can now apply the acceleration coefficient formula,
where L(x) is the execution time on x threads:

S(n) =
L(1)

L(n)
.

Then, the parallelization efficiency coefficient is calculated by:

E(n) =
S(n)

n
.

The results of applying those results on test data can be seen
in Table II (L(1) = 52ms).

Table II: Parallelization efficiency coefficient: 16 logical
threads

Method S(16) E(16)
naive thread pool 2.87 0.180
boost thread pool 3.17 0.198
tbb::parallel for 3.23 0.202

B. Implementation details

Initially, the shared pointers were used for object manipula-
tion. Switching to raw pointers resulted in an x1.5 performance
boost.

C. Rejected methods

• While researching the topic, a few different lighting
models were discussed. Eventually, we decided to discard
all probabilistic methods. Performance reasons mainly
conditioned this decision, as the real-time CPU ray tracer
cannot afford to send sufficient rays to prevent random
grain effects.

• Gamma correction was implemented and tested. How-
ever, it significantly decreased performance up to three
times, so the team decided to turn off this feature.

0 20 40 60 80 100

0

100

200

300

Number of spheres in the scene

FP
S

Figure 4: Plots of FPS depending on the number of spheres
on the scene.

0 20 40 60 80 100

0

100

200

300

Number of meshes in the scene

FP
S

Figure 5: Plots of FPS depending on the number of meshes
on the scene.

D. Results

Figure 4 shows the results of performance tests with spheres
on the scene.

Essentially, the same can be seen in Fig. 5, but for meshes,
where each mesh is just a single triangle.

Important to note that all tests were conducted in 640x480
resolution.

V. CONCLUSION

In this project, we explored the common approaches in ray
tracing and its implementation on the CPU. The conclusion
is that it is possible to use CPU for ray tracing, using further
optimizations in this field. However, it’s still much slower than
any graphics, computed on GPU, especially in recent years.

The code of the project is available at https://github.com/
codefloww/Ray-Tracer.

REFERENCES

[1] J. F. Blinn, “Models of light reflection for computer synthesized
pictures,” SIGGRAPH Comput. Graph., vol. 11, no. 2, p. 192–198, jul
1977. [Online]. Available: https://doi.org/10.1145/965141.563893

[2] T. Möller and B. Trumbore, “Fast, minimum storage ray/triangle
intersection,” in ACM SIGGRAPH 2005 Courses, ser. SIGGRAPH ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
7–es. [Online]. Available: https://doi.org/10.1145/1198555.1198746

[3] I. Wald, T. Purcell, J. Schmittler, C. Benthin, and P. Slusallek, “Realtime
ray tracing and its use for interactive global illumination,” Eurographics
State of the Art Reports, p. 12, 01 2003.

[4] M. Worboys and M. Duckham, GIS, a Computing Perspective. CRC
Press, 01 2004.

[5] A. Appel, “Some techniques for shading machine renderings of
solids,” in Proceedings of the April 30–May 2, 1968, Spring Joint
Computer Conference, ser. AFIPS ’68 (Spring). New York, NY,
USA: Association for Computing Machinery, 1968, p. 37–45. [Online].
Available: https://doi.org/10.1145/1468075.1468082

[6] “Blinn-Phong reflectance model,”
https://knowww.eu/nodes/59b8e93cd54a862e9d7e415a, [Accessed 16-
May-2023].

https://github.com/codefloww/Ray-Tracer
https://github.com/codefloww/Ray-Tracer
https://doi.org/10.1145/965141.563893
https://doi.org/10.1145/1198555.1198746
https://doi.org/10.1145/1468075.1468082
https://knowww.eu/nodes/59b8e93cd54a862e9d7e415a

	Introduction
	Architecture and implementation details
	Theoretical foundation for used algorithms
	Vector operations
	Matrix transformations
	Intersection tests
	Lighting model

	Performance Analysis and Results
	Parallelization
	Implementation details
	Rejected methods
	Results

	Conclusion
	References

