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Abstract—This report presents an in-depth exploration of the
Apple Neural Engine (ANE) as a key player in the on-device AI
inference trend. The project is structured into three parts, each
addressing specific aspects of ANE functionality, optimization,
and potential contributions to the broader AI community.

Index Terms—Apple Neural Engine, Core ML, Core ML Tools,
Stable Cascade

I. INTRODUCTION

With the advancement of computer technology, 2023
emerged as a year marked by a significant surge in the progress
of Artificial Intelligence (AI), characterized by frequent re-
leases from major corporations and an increase in startups
integrating AI into their products. Despite this development,
the demand for server computational resources, particularly
Graphics Processing Units (GPUs), remains a significant chal-
lenge, affecting both network training and inference on a
massive scale. OpenAI has highlighted the cost disparity,
asserting that inference is notably more resource-intensive than
training [1].

In response to this challenge, there is a growing trend
towards on-device inference, where AI models execute directly
on user devices. This approach offers advantages such as
reduced server infrastructure costs, enhanced user data privacy,
and a decreased ecological footprint through the utilization of
energy-efficient on-device resources.

Apple, a prominent contributor to this paradigm shift, in-
troduced the Apple Neural Engine (ANE) in 2018. ANE is
a specialized neural network unit designed for optimal on-
device inference, showcasing superior efficiency for specific
operations. Unlike GPUs, which excel in parallel processing,
ANE’s specialization allows for highly efficient execution of
a limited set of operations. Noteworthy examples include
MobileOne for 1 ms inference and Stable Diffusion for 10
seconds.

Despite its potential, working with ANE poses challenges
due to its closed nature. Apple provides access but restricts
developers from understanding its internal workings, offering
only a few examples of effective usage.

II. AIM

This project aims to study the operation of the Apple Neural
Engine (ANE). The project can be roughly divided into two
parts — the research of the Neural Engine itself and the
application and optimization of the Stable Cascade model to
grasp a deeper understanding of the working process of ANE.

The stages of the research include:
1) Explore the process of the neural network conversion and

automatic optimization.
2) Develop optimizations based on the insights gained from

the previous step and a deep understanding of how ANE
can work more efficiently.

III. SETUP

A. Apple Neural Engine

Apple Neural Engine (ANE) represents a type of Neural
Processing Unit (NPU) comparable to a GPU. However, its
focus is on accelerating neural network operations, such as
convolutions and matrix multiplications, rather than graphics.

Since 2017, every chip in Apple’s series A, designed for
devices like the iPhone, certain iPad models, and Apple TV,
has been equipped with the Neural Engine. Beginning in 2020,
all Apple silicon chips, including M1, M2, and M3, have also
integrated ANE.

The initial version featured two neural cores, capable of
processing up to 600 billion operations per second, while the
chips M2 Pro/Max are capable of processing up to 15.8 trillion
operations per second.



ANE facilitates the offloading of specific tasks that were
traditionally handled by the central processing unit (CPU) or
graphics processing unit (GPU). A machine learning model
optimized for ANE demonstrates enhanced productivity com-
pared to these processors.

Nevertheless, ANE has its limitations. Unfortunately, Ap-
ple does not provide developers with explicit guidelines on
optimizing their models to fully exploit the benefits of ANE.
This process primarily relies on experimentation to determine
the most effective approaches and identify any potential draw-
backs.

B. Core ML

Core ML is an Apple framework to integrate machine learn-
ing models into the app. It provides a unified representation for
all models. Your app uses Core ML APIs and user data to make
predictions and fine-tune models, all on the user’s device. Core
ML optimizes on-device performance by leveraging the CPU,
GPU, and Apple Neural Engine (ANE) while minimizing its
memory footprint and power consumption [3].

Running a model strictly on the user’s device removes any
need for a network connection, which helps keep the user’s
data private and your app responsive.

Fig. 1. Core ML Scheme [3].

C. Core ML Tools & Conversion

Core ML Tools enables us to convert machine learning
models from third-party libraries to the Core ML format, as
well as read, write, and optimize Core ML models [7].

Fig. 2. Convertion from PyTorch to Core ML [7].

The conversion happens using mainly the Core ML Tools
Python package. Here are the detailed steps of a PyTorch ML
model conversion:

• Start with the PyTorch model we want to convert.
• Use PyTorch’s JIT module to convert to a representation

called TorchScript.
• With a TorchScript model in hand, we will invoke the

new Core ML converter to generate an ML model. The
converter works by iterating over the operations in the
TorchScript graph and converting them one by one to

their Core ML equivalent. Sometimes, one TorchScript
operation might be converted into multiple Core ML op-
erations. Other times, the graph optimization pass might
detect a known pattern and fuse several operations into
one.

D. Scripting & Tracing

Tracing and Scripting are both processes that turn models
written in eager-mode Python code into a graph that describes
computation. Scripting parses the Python source code of the
model and compiles the code into a graph. Tracing runs a
model with certain inputs and ”traces” all the operations that
are executed into a graph.

They differ in operations that they could support. Scripting
does not support complicated syntax and operation, but it is
good for the most basic ones, so code quality could severely
deteriorate. Tracing could handle and support any operations,
but you should be careful with variables and dynamic control
flow.

Another difference between them is how they affect code
health. The trace only keeps one branch of the condition, but
the script checks all branches. As a result, tracing has less
effect on code than scripting.

Tracing and scripting both have problems, and the best
solution is usually to mix them. This gives us the best of both
worlds. To minimize the negative impact on code quality, we
should use tracing for the majority of logic and use scripting
only when necessary.

E. Performance Report and Optimization

Performance report provides us with crucial information
about the performance of the ML model. Each of the per-
formance reports is generated using Xcode, which is tightly
integrated with Core ML. It shows us information about
average/min/max load and model prediction times. In addition,
a more important feature is that we can see which operations
at which levels are performed on the ANE, CPU, or GPU.
Our goal is to achieve the maximum number of operations
(ideally all) performed on ANE. Since moving data between
processing units is very time-consuming (sometimes so much
so that it would be more profitable to use only the CPU), it
is necessary to optimize and rewrite the operations that are
performed on the CPU so that they would be executed on the
ANE. Additionally, given the typically huge size of models,
employing compression techniques offers benefits.

F. Compression techniques

There are several ways to compress model weights. The first
way is to store them more efficiently using a sparse matrix rep-
resentation. This can be achieved by using a technique called
pruning. Another way is to reduce the precision used to store
the weights. This can be achieved by both quantization and
palettization. However, both strategies are lossy and generally
less accurate than their uncompressed counterparts.

Pruning helps to store model weights efficiently by repre-
senting them as a sparse matrix. Pruning means setting some



of the weights to 0. This means that only non-zero values
need to be stored. This saves about 2 bytes of memory for
each 0 value entered. (Of course, you will also need to store
the location of the zeros to reconstruct the matrix later.)

Fig. 3. Pruning technique [13].

The second method of compressing weights is quantiza-
tion, which uses 8-bit precision to store weights. To perform
quantization, you modify the weights (scale, shift, and round
them) so that they fall within the INT8 range. In the example
below, the scale is 2.35, and the bias is 0.

Fig. 4. Quantization technique [13].

To reduce the accuracy of the scales below 8 bits, you can
use a technique called weight clustering or palettization. In
this technique, weights with similar values are grouped and
represented using the value of the center of the cluster to which
they belong. These cluster centers are stored in a lookup table.
The original weight matrix is transformed into an index table
where each element points to the corresponding cluster center.

In this example, since we have four clusters, it is possible
to represent each weight using 2 bits, which allows for a
compression factor of 8 compared to Float16.

Fig. 5. Palettization technique [13].

IV. NEURAL PROCESSING CIRCUIT

A. Structure of Neural Processing Circuit

A neural processor circuit is a circuit that performs various
machine learning operations based on computations, including
multiplication, addition, and accumulation. It performs neural
network operations on the input data based on at least the
kernel data.

It contains a Neural Task Manager, which controls the
execution of tasks using the Neural Processing Circuit. Ker-
nel Direct Memory Access (DMA) fetches kernel data from
System Memory and sends it to each of the Neural Engines.
Neural engines execute operations for neural network tasks
concurrently. Data Buffer is a temporary storage for data
associated with the Neural Network operations. The Buffer
DMA retrieves a segment of input data from System Memory,
storing it in a Data Buffer, while a write circuit transfers data
from the Data Buffer to System Memory.

The overall work of the Circuit starts with loading data from
System Memory to Buffer Data and then to Data Buffer, which
distributes input data between all present Neural Engines.
Then, Kernel DMA gets kernel data from System Memory and
sends it to each of the Neural Engines. In this context, kernel
data represents information from which kernel elements can
be extracted. Later, it will be used to extract kernel coefficients
(Neural Network weights for specific layers).

B. Structure of Neural Engine

The Neural Engine (NE) receives the input data and per-
forms multiply-accumulate (MAD, aka convolution) opera-
tions on the input data based on stored kernel data, which
is Kernel Extract extracts from Kernel DMA. Then, further
post-processing operations are performed based on the result
of the multiply-accumulate operations, and the output data is
generated.

The input buffer circuit is a circuit that stores a portion
of the input data as it is received from the Data Buffer and,
after changing portion size by shifting read locations using
a shifter, sends an appropriate portion of input data to the
computation core for processing. An accumulator is a memory
circuit for MAD operations results. A post-processor is a
circuit that performs further processing of values received from
the accumulator.



Fig. 6. Structure of Neural Processor Circuit [11].

C. Input Data Split

Before getting input data for performing MAD operations
and post-processing, it is typically split into smaller pieces of
data for parallel processing at multiple Neural Engines in an
overlapping manner.

The overlapping portions are parts of the input data that are
over-fetched in two adjacent slices to provide spatial support
for a corresponding kernel. Within the loop for a slice is
a processing loop for a tile of the slice, and the tile is a
processing loop for a work unit. A work unit is a portion of
the input data having a size that produces output values that
fit into the accumulator of the neural engine during a single
cycle of the computation core.

For Neural Engines to effectively analyze data at segment or
tile edges, these edges must overlap with adjacent segments or
tiles. This overlapping, called spatial support, offers additional
context or space, enabling kernels to process data at the bound-
aries of selected areas without losing important information.

D. Rasterizers and Method for Processing Input Data in
Neural Processor Circuit

A rasterizer is a component within various parts of the
Neural Processor Circuit (Buffer DMA, Kernel DMA, Neural
Engine), which tracks a segment of input data (for example, a

tile, a work unit) and manages the components of the neural
processor, a circuit to process the input data segment properly.

First, the Neural Task Manager programs rasterizers, and
then the operating buffer DMA process is started. It is initial-
ized by a rasterizer instructing Buffer DMA to cause Buffer
DMA to receive a tile of input data from System Memory.
The tile received by Buffer DMA is stored in Data Buffer.

The rasterizer in Data Buffer then instructs Data Buffer to
send a work unit to one or more Neural Engines. The work unit
is then stored in input buffer circuits of one or more Neural
Engine.

The Input Buffer of the Neural Engine selects a portion of
the work unit to be sent to the MAC (Multiply-Accumulate
Module) for the convolution operation. The MAC then per-
forms multiply-accumulate operations on the selected portion
of the work unit using the appropriate kernel. It is then
determined whether the entire work unit has been processed
by one or several neural engines. If not, the selected portion
of the work unit is shifted by shifters and returned for another
round of multiply-accumulate operations.

Q: Has the entire work unit been processed?
A: If yes, the data buffer sends the next work unit to the neural
engine.

Q: Have all tiles been processed?



Fig. 7. Structure of Neural Engine [11].

A: If not, the process moves on to the next tile by instructing
the buffer DMA through the rasterizer to receive the next tile
from system memory and repeat the subsequent processes.

A neural network consists of a collection of layers, each
performing specific computational tasks to process data. Be-
fore the model is executed on the Neural Processor Circuit, it
is converted, such as by the CPU, into a task list. This task
list includes a sequence of layers.

E. Neural Task Manager

The Neural Task Manager manages the execution of tasks in
the neural processor network. It uses task queues to organize
task execution from the task list. The task arbiter is a circuit
that selects tasks, using a specific parameter – priority, from
the Task Queues for execution by the Neural Processor Circuit.
The CPU places references to the task list in the queue. The
reference stored in the queue includes pointers and counters
leading to the list of task descriptors in system memory. A task
descriptor is a detailed description of the task, which defines
how exactly the neural processing circuit should execute it.

After choosing a task, using reference, Task Manager DMA
gets the task descriptor stored in System Memory. Then, it
will be placed in the Fetch Queue until it is confirmed for
execution. Configuration Queue stores ready for execution
tasks. While a task is in a configuration queue, the neural
processor circuit performs a prefetch for configuration and
kernel data before other components of the neural processor
circuit execute the task.

The task queue contains references to task descriptors that
are physically stored in system memory. Key elements of the
task queue include pointers to the first task to be processed, the
network ID associated with the task, references for managing
and tracking the number of tasks in the queue, priority
settings for task arbitration, and indicators for managing queue
execution interruptions and resumptions.

F. Configuration Queue

The configuration queue stores task descriptors of tasks
committed for execution by the neural processor circuit. The
configuration queue can have multiple distinct queues, each of
which stores a portion of the configuration data extracted from
the task descriptor. This setup allows the organization of data
in a way that each component of the neural circuit has access
only to the information it needs. The neural task manager
uses this queue to program rasterizers, ensuring they track the
necessary order for various components (Neural Engine, Data
Buffer, Buffer DMA, Kernel DMA).

G. Task Switching Process

Through the task arbiter, the neural task manager can
support task switching between task queues. Task switching
may occur because a task queue has a higher priority parameter
than a task queue being executed. The priority parameter of a
task queue can be determined according to the task urgency,
task length, and task source. If two or more task queues
have the same priority parameter, the neural task manager
can select a task queue by considering additional parameters,
such as task queue indexes. The task manager can trigger a



Fig. 8. Input Data Split [11]

task switch request after determining that a task or a task
queue has a higher priority parameter than a current task or
current task queue. Output data from a task from a task list
can be directly stored in the system memory, provided there
is a switch between queues. The output information will be
stored in a data buffer when tasks are executed within a single
queue. This is related to the fact that when execution takes
place within one queue, it needs quick access to memory since
each subsequent task is expected to need information from the
previous one.

Task descriptor headers can include configuration data that
configure behaviors related to task switching. Specifically,
there are plenty of them that define the following workflow.

• Task Switch Enable (TSE) Parameter – defines whether
the neural task manager can begin a task switch process
after execution of the task.

• Task Switch Ready (TSR) Parameter – defines whether
the neural task manager can task switch after execution
of the task. The last task in a task list of a current task
queue has TSE=1 and TSR=1. This can allow the neural
task manager to switch to a new task queue after the
current task queue is complete, even without receiving a
task switch request.

• Source Pointer Change (SPC) Parameter – defines

whether the input data for the task should be retrieved
from the system memory or the data buffer.

• Destination Pointer Change (SPC) Parameter – defines
whether the output data of the task should be stored in
the system memory or the data buffer.

• Task Switch Ready (TSR) Parameter – defines whether
the neural task manager can task switch after execution
of the task.

• Source Pointer Last (SPL) Parameter – indicates that after
returning to an interrupted task queue, the task is the last
with input data stored in the system memory. The first
task in a task list of a task queue may have SPL=1. This
can clear any task-switching process that may have been
set earlier for the task queue.

• Task Queue Switch Parameter (TQSP) – indicates
whether the task queue was interrupted due to a task
switch and needs to be completed.

• Global Task Switch Parameter (GTSP) – indicates that a
task switch is in process.

The neural task manager can follow a set of rules, which
relies on these configuration data parameters, that configures
the neural task manager to direct a task switch process.



Fig. 9. Method of Processing Input Data in Neural Processor Cir-
cuit [11]

H. Input Data Preparation

Usually, when we want to run a file, we need to compile
it and get machine code to run it on the CPU. If we want
our ML model to run on ANE, we first need to convert it
into .mlpackage file, but to make instructions comprehensible
to ANE, we need to compile the .mlpackage file to the
.mlmodelc file. At this stage, the .mlmodelc file is a sequence
of instructions for ANE to execute to run the model.

To make this instruction sequence accessible for ANE, we
need to load them into System Memory via bus and network
interface. System Memory stores instructions for execution by
SOC components and data processed by SOC components.
Both bus and network interfaces are used to exchange data
between devices. After that, the Neural Processor Circuit
via Buffer DMA and Data Buffer fetches and distributes
instructions for each of the Neural Engines to execute.

Model execution starts from Stage C, which has prompt text
as an input and operates in latent space. The output of Stage
C will be an Input for the next Stage B, and the Output of this
stage will be an Input for the last stage, Stage A. Output of
Stage A is the final image generated by the model. Each stage
input will be considered a different input for Neural Engines.

Fig. 11. Task Switching Process [11].

V. STABLE CASCADE

Stable Cascade is a text-to-image model, which consists of
three models: Stage A, Stage B and Stage C, representing a
cascade to generate images, hence the name “Stable Cascade”.
This architecture, called Würstchen, aims to learn extremely
compact image representation that can guide the diffusion
process.

Prompt

Stage C

Stage A

Stage B

Image

Latent Generator

Latent Decoder

Fig. 12. The Würstchen architecture of Stable Cascade.

A. Architecture

The inference architecture consists of three stages [9], where
the result of each stage is the input for the next one:

1) Stage A is the decoder of Vector-Quantized Generative
Adversarial Network (VQGAN) operating in the latent
space (a compressed representation of the original data
where each dimension corresponds to a specific feature
or characteristic) with a compression ratio of 4:1.



Fig. 10. Neural Task Manager [11]

2) Stage B is the Latent Diffusion Model (LDM) generating
the sample in the latent space of the VQGAN in Stage
A, conditioned on the text and the latent representation
from Stage C.

3) Stage C is LDM that generates highly compressed latent
representation sized in 16x24x24 (compression ratio of
42:1), conditioned on the text representation.

Stages A and B are used to compress images, similar to the
job of the Variational Autoencoder (VAE) in Stable Diffusion.
However, with this setup, a much higher compression of
images can be achieved, as well as cheaper training and
inference. Furthermore, Stage C is responsible for generating
the small 24 x 24 latents given a text prompt.

B. Conversion

The code for our project and conversion specifically can be
found here [12]. The conversion generally consists of the same
stages described earlier. However, as a result, four essential
models are obtained after Stable Cascade conversion: text-
encoder, decoder, prior, and VQGAN. There are two pipelines
from which we can get all necessary models: StableCascade-
PriorPipeline and StableCascadeDecoderPipeline.

StableCascadePriorPipeline consists of exactly prior, text-
encoder, and other auxiliary parameters. This pipeline is meant

to be used with the Stage C model, which operates on the
small 24 x 24 latents and denoise the latents conditioned on
text prompts.

The Stage B and Stage A models are used with the
StableCascadeDecoderPipeline (consisting of decoder, text-
encoder, VQGAN, and other auxiliary parameters). They are
responsible for generating the final image given the small 24
x 24 latents.

For convenience, we utilized a pipeline that consolidates
all previously mentioned components – StableCascadeCom-
binedPipeline.

C. Performance report

The images below provide information about the perfor-
mance of each component of the model.



Fig. 13. Performance report for the ’text encoder’ component.

1) Text encoder: The report offers an insightful overview of
each layer within the text encoder. The majority of operations
are efficiently handled by ANE, with only a small portion
being processed by the CPU.

2) Decoder: For the decoder, the situation is completely
different: the bulk of layer operations are offloaded to the
GPU for computation, with the ANE handling only 254
layers, compared to the GPU’s 8946. The primary assumption
behind this performance is that the ’decoder’ component of
the Stable Cascade, along with the ’prior,’ is highly complex.
Therefore, most operations cannot be offloaded to the ANE,
and optimizing it would necessitate a complete overhaul of the
model.

3) VQGAN: Lastly, VQGAN’s performance is highly opti-
mized. Only 2 layer operations are handled by the CPU, while
the remaining 239 are efficiently processed by the ANE.

Fig. 14. Performance report for the ’decoder’ component.

Fig. 15. Performance report for the ’VQGAN’ component.

D. Core ML Instrument

While creating a performance report can demonstrate a
model’s potential speed and efficiency, an additional tool is
required to profile the model’s performance in real time. To
do this, we can use the Core ML Instrument, which allows
us to visualize the model’s performance while it is running
in real-time, which helps identify possible performance issues
and make necessary optimizations.

Fig. 16. Core ML Instrument for ’text encoder.’

Fig. 17. Zoomed in Core ML instrument for ’text encoder’ showing
the distribution of operations between cores.

VI. SUMMARY

This research explores the ANE that offers specialized pro-
cessing for specific ML operations, enhancing efficiency in on-
device inference tasks. It dives into the structure of the Neural
Processing Circuit and Neural Engine, data partitioning, and
data processing operations research. There is an explanation of
the functionality of different parts of neural processing, such
as the Neural Task Manager, and processes, such as input
preparation and task switching. Core ML facilitates model
conversion and optimization for ANE utilization. Performance
analysis reveals ANE’s efficiency in offloading tasks despite
complexity constraints in certain components. Real-time pro-
filing with Core ML Instrument aids in identifying optimiza-
tion opportunities. The study also delves into the application of
ANE in the Stable Cascade text-to-image model, showcasing
its efficacy in on-device inference. The study has further
potential and can be improved by performing optimizations
on the converted model of Stable Cascade, as this will help



with a better understanding of the operation and conversion
of the model and further investigation of the performance
of ANE. Overall, the research highlights ANE’s significance,
challenges, and optimization strategies in advancing on-device
AI and ML capabilities. The code of the project is available
at https://github.com/khrystynamk/ANE-Research.
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