
Visual odometry for real-time localization of
dynamic locomotion devices

Savorona Kostyantin
Computer Science, UCU

Lviv, Ukraine
savorona.pn@ucu.edu.ua

Ivaniuk Oleksandr
Computer Science, UCU

Lviv, Ukraine
ivaniuk.pn@ucu.edu.ua

Humeniuk Denis
Computer Science, UCU

Lviv, Ukraine
humeniuk.pn@ucu.edu.ua

Parnosov Nazar
Computer Science, UCU

Lviv, Ukraine
parnosov.pn@ucu.edu.ua

Krasnianskiy Tymur
Computer Science, UCU

Lviv, Ukraine
tymur.krasnianskyi@ucu.edu.ua

Abstract—This project explored different methods of visual
odometry for real-time localization, highlighted their main ad-
vantages and disadvantages, what is used in choosing the most
suitable one, and what can be applied to dynamic locomotion
devices and also considered hardware specifications and require-
ments for using that algorithm with microcomputers.

I. INTRODUCTION

Automated systems are developing more and more every
day. At the same time, their requirements are increasing. One
of the directions that needs development is the automation
of the movement of devices in difficult conditions, which
include the lack of high-quality connection. In this case, one
of the main tasks of such processes is visual analysis of
the environment. Often, on some devices, it is necessary to
track the movement of the camera and predict its coordinates.
And the tasks described are mostly performed using visual
odometry.

It is also important to mention that there are a lot of devices
that require instant frame processing, including unmanned
aerial vehicles (UAVs). This is primarily because their working
conditions are extremely demanding, and the market requires
modern solutions capable of performing the tasks of more
accurate and, most importantly, reliable use of UAVs [3].
Given the above, we will further consider the use of the
algorithm for UAVs and similar devices.

II. PROBLEM

Various technologies are used for UAV localization and
control, but the most important is GPS and connection with
remote control. Without it, the device will simply lose its
orientation in space and will not be able to determine its
location, and, accordingly, without connection with the remote
control, it may simply be lost without completing its task.
Therefore, it will be relevant to explore a way to ensure drone
localization, namely the use of visual odometry. From that,
the goal emerges: to develop a way to ensure the autonomous
localization of UAVs in conditions of bad connection using

visual odometry methods, taking into account hardware re-
quirements and capabilities.

III. REQUIREMENTS

To develop a device, it will first of all be appropriate
to consider the requirements of its operation to select the
hardware and implement the algorithm. The hardware and
software requirements are as follows.

A. Hardware requirements
One of the frequent tasks of unmanned vehicles, which

will be considered in this work and can be improved by real-
time localization using visual odometry, is to follow so-called
“routes”, which, for example, is often used in video filming.
To plan such routes, it is necessary to have:

• GPS coordinates: Provide the location data necessary for
navigation.

• Stabilization: Ensure stable movement and filming,
which is particularly important for smooth video footage.

• Camera: Capture video footage along the route.
• Height measurement: Determine the altitude of the

device.
• Direction determination: Know the orientation of the

device to navigate accurately.

B. Software requirements
In the face of a cluster of communication devices and

a diverse landscape, GPS localization can be unstable and
not accurate enough [8]. When organizing the automated
movement of the device, you need to take this into account.
In the absence of communication, the device should be able to
localize without it and continue its planned route. Therefore,
it is necessary to ensure the following requirements at the
program level:

• Missions: Organization of missions based on GPS coor-
dinates.

• Localization: Instant determination of device coordinates
based on the environment in the absence of reliable
communication.

IV. HARDWARE FOR APPLYING ALGORITHMS

In projects involving mobile platforms such as drones or au-
tonomous vehicles, selecting the right hardware is critical. This
document outlines our approach to selecting and integrating
key hardware components to meet our project’s requirements
for navigation, stability, video capture, altitude measurement,
and orientation.

We have chosen a popular GPS module (see Fig. 1) to
provide accurate location data. The module supports both GPS
and GLONASS to improve accuracy and reliability in different
geographical regions. We need it to obtain the initial coordi-
nates and to test and evaluate the accuracy of the algorithm.
Additionally, we selected the MATEKSYS GNSS compass
(M10Q-5883/HP024.0115) because of its high sensitivity and
multi-constellation support, which provides good positional
accuracy, the MATEKSYS has an integrated magnetometer
and barometer, offering more comprehensive data integration
in a compact form factor, increasing system reliability and
reducing the need for additional sensors.

For stabilization, we use INAV firmware integrated with a
compatible flight controller that supports both multi-rotor and
fixed-wing aircraft.

We use a high-quality camera module that connects directly
to our main processor via a high-speed interface, enabling
high-quality video capture. This setup is optimized for sen-
sitivity in different lighting conditions. We use a barometer
for accurate and fast altitude measurements. It provides better
accuracy than GPS altitude data, especially in scenarios where
altitude changes are frequent and subtle.

We integrate an inertial measurement unit (IMU), which
combines an accelerometer and a gyroscope to provide us with
orientation and displacement data in 6 axes. Previously, our
IMU also combined a magnetometer that was part of the GPS
module, but this caused a lot of fluctuation in the YAW. So
we dropped it.

We selected the SpeedyBee F405 V3 (Fig. 1) because it
offers a robust built-in sensor suite that simplifies setup and
scaling and reduces compatibility issues. In addition, this
controller supports a wide range of communication protocols,
has enough I/O ports for further expansion, and is known for
its reliable performance and easy firmware updates.

We chose the Raspberry Pi 4 as the main computer equipped
with a quad-core ARM Cortex-A72 processor and 4GB RAM.
A general view of our system is shown in Fig. 1.

V. UAV CONFIGURATION

For the configuration of our UAV, we are using iNav –
a cross-platform flight control configuration tool. The main
points on which we are focusing in iNav:

• Setting up GPS coordinates. We can set up UART to
receive GPS from Compass using Mavlink packages or
Raspberry PI with the help of NMEA packages. Also, we
can set up a data rate and disable arming if the device
doesn’t get GPS before the flight.

Fig. 1: General view of our system.

• Setting up the remote control. When we want to
control the drone remotely, we need to set up communi-
cation parameters: SBUS protocol, bounds of throttle/rol-
l/pitch/yaw, etc.

• Troubleshooting. When something goes wrong with
arming or receiving information from external modules,
problems can be debugged and fixed directly in Inav.

• Setting up missions. In iNav, we can set missions for the
drone in the format ”Fly to A – then B – then C and come
back”. It is an important feature for testing approximate
GPS coordinates in our further steps.

VI. VISUAL ODOMETRY

In tasks that require the work of the device observer with
images and motion, the use of visual odometry could be
beneficial [1].

A. Approaches

There are two primary approaches to applying visual odom-
etry: feature-based and appearance-based (direct) approaches
[1], [2].

The feature-based approach entails extracting features from
images, like corners, lines, and curves, across consecutive
frames, identifying and tracking distinctive features among
them, and ultimately determining the motion. Such methods
have been successful in visual odometry due to the availability
of robust feature detectors and descriptors [1]. However,
feature-based approaches have several disadvantages [2]:

1) Dependence on choice: the accuracy of feature-based
methods is sensitive to the choice of detection and
matching thresholds;

2) Necessity for robust estimation techniques to deal with
wrong correspondences;

3) Most feature detectors are optimized for speed rather
than precision.

Appearance-based approach checks changes in the appear-
ance of the frame and estimates motion directly. More pre-
cisely, it uses local intensity gradient magnitude and direction
for the optimization of correctness compared to the feature-
based approach. From statistics of testing appearance-based
method [2] it is good with:

1) scenes with little textures;
2) camera defocus;
3) motion blur;

Also, it saves time by not pulling out features but analyzing
frames directly [1].

VII. ALGORITHM

A. Introduction

This project utilizes monocular visual odometry to estimate
the motion of a camera through sequence image analysis.
Employing a single camera setup reduces hardware complexity
and costs, making this approach valuable for dynamic locomo-
tion devices where weight and power consumption are critical.
The algorithm is designed to integrate visual data with GPS
input, ensuring robust localization even when GPS signals are
unreliable or absent, and work in real time.

B. Choice of Libraries

For the implementation of our visual odometry algorithm,
we used several libraries:

1) OpenCV – essential for real-time feature detection and
optical flow algorithms.

2) GeographicLib – for accurate computation of GPS co-
ordinates using relative displacements [4].

3) MAVSDK – for communication with UAV hardware [5].
4) libserialport – for communication with GPS modules.

C. Data Flows

The algorithm processes data through several stages:
1) Input images: Continuous image capturing from the

onboard camera.
2) Feature detection and matching, using the OpenCV ORB

detector to detect and match objects in consecutive
frames.

3) Motion calculation: Calculates motion based on the
movement of relevant objects, scaled using depth in-
formation from GPS Module and telemetry from Flight
Controller.

4) GPS data integration, providing real positioning for our
experiments.

5) Output: The system outputs the GPS coordinate tra-
jectory, combining visual odometry and GPS data to
accurately track the movement of the drone.

D. Implementation

GPS data integration corrects for drift inherent in visual
odometry by applying corrections based on new GPS read-
ings. This is essential for autonomous operation devices with
dynamic movement like drones.

The implementation utilizes the capabilities of the Rasp-
berry Pi 4B+, applying multi-threading to manage real-time
data processing and ensure that the navigation tasks are
performed efficiently.

VIII. TESTING

An integral part of our project is the testing of implemented
solutions to check their correctness, which also requires the
simulation of real conditions and requirements. This work
considers two methods: simulation and the real world.

A. Real-world testing

Since aircraft are quite vulnerable to external influences,
conducting testing in real conditions is important. Before their
implementation, we determined the main criteria for evaluating
the tests and the requirements for the conditions in which they
will be conducted.

Metrics:
1) Mean square error.
2) Graphs of trajectories of real GPS compared to predicted

ones.
Conditions:
1) Non-linear motion trajectory.
2) Speed change.
3) Average flight altitude.

B. PX4 Autopilot

When conducting real tests, there are great risks of dam-
aging the device with minimal malfunctions. So, using the
simulations is required.

We considered two possible options: Gazebo-garden and
PX4 Autopilot. The Gazebo-garden had serious drawbacks –
informally speaking, it was too modern, lacked documentation,
and was unable to work with some established parts of our
system.

PX4 Autopilot is quite an optimal choice for testing because
it has all the functionality required and has clear documen-
tation. To simulate flights, it uses gazebo-classic, MAVLink
communication protocol, and others [7].

For more convenient testing, it was decided to use the
remote control to control the drone in the simulator in real time
which leads to more realistic performance. For this, we used
the SBU protocol and developed a corresponding converter
using the MAVSDK library [5].

Receiving video from the simulator was accomplished using
GStreamer, with the following pipeline [6]:

Listing 1: GStreamer pipeline code
g s t − launch −1 .0 −v u d p s r c p o r t =5600
caps = ’ a p p l i c a t i o n / x− r t p ,
media =(s t r i n g) v ideo ,
c lock − r a t e =(i n t) 90000 ,
encoding −name =(s t r i n g) H264 ’ !
r t p h 2 6 4 d e p a y ! avdec h264 !
v i d e o c o n v e r t ! a u t o v i d e o s i n k

An example of the simulation is shown in Fig. 2.

htb

Fig. 2: PX4 simulator

IX. RESULTS

Fig. 3: First test.

Several test flights were performed to determine the correct-
ness of our algorithm:

• First: at a low altitude with a stable speed. As we can
see in Figure 3 and 4, the trajectory is similar, but
it has a different scale and a different orientation. We
identified the following reasons for the deviation: the
algorithm does not take into account the orientation from
the compass. Also, it does not determine the height to
calculate the pixel scale.

• Second: In the second test, the problem with the orien-
tation is corrected, and directions are close (see Fig. 5),
but the pixel scale still does not depend on the altitude
of the device.

• Third: the test was carried at an average flight altitude
with a variable speed and a non-linear trajectory. Built-in
sensors of the flight controller were used to determine
the direction and orientation in place of the GPS. The
altitude and tilt of the camera is taken into account
in determining the pixel scale. The obtained trajectory,
presented in Fig. 6a and Fig. 6b, is close to the real

Fig. 4: Second test.

Fig. 5: Third test.

trajectory both in scale and orientation. The mean square
error of the estimated trajectory is shown in Fig. 7.

As we can see from this distribution, most errors are lower
than 0.002◦, but values up to 0.014 are present. The problem
is that when there is a big turbulence during the flight, the
approximation becomes worse. The solution is to develop an
algorithm that will also consider the intricacies of flying a
drone with no stabilization.

X. PROBLEMS AND TROUBLESHOOTING

In this work, we faced a lot of obstacles, which we will
describe here.

A. Calibrating the GPS module

GPS compass is a very sensitive module, so it must be
calibrated in many situations: after some flights, moving it
over a long distance, or during magnetic storms. Furthermore,
the position of the compass at the flight controller should also
be taken into account and calibrated in iNav or several similar
configurators.

(a) Real trajectory. (b) Approximated by our algorithm trajectory.

Fig. 6: Fourth test (real trajectory).

Fig. 7: Mean square error graph

B. Creating custom 3D models for specific needs
Another significant challenge we faced was creating cus-

tomized 3D models tailored to the specific requirements of
our project.

C. Hardware stability
During flights, it is important to take into account several

characteristics of the module. For example, the video trans-
mitter can burn if the voltage is very high and the flight takes
a short period, as it will get a lot of energy.

D. Appropriate testing
Testing is important for such an algorithm, as real-world

usage may be expensive. The problem with testing is that
we need datasets with video frames and GPS coordinates
on every frame to track the difference between the real and
approximated ones.

XI. SUMMARY

In summary, this project develops a method for autonomous
localization of unmanned aerial vehicles in poor communica-
tion conditions using visual odometry methods and consider-
ing the hardware’s properties and capabilities.

The requirements for the operation of the entire system were
set, and the hardware was selected in accordance with them:
Raspberry Pi 4, GPS module, and flight controller Speedybee
f405 v3.

An algorithm has been developed that takes into account all
the necessary aspects of the drone’s operation and allows for
predicting real coordinates in the absence of communication.

The developed solution was tested after setting the require-
ments for the test implementation and conducting them in real
conditions. A simulation testing method was also created using
PX4 Autopilot with Gazebo-classic.

The tests have shown that the developed solution fulfills
the requirements and allows the estimate of the location of
the device in the absence of GPS communication.

The code of the project is available at https://github.com/
Oleksandr0605/VO localization and mapping

REFERENCES

[1] Mohammad O. A. Aqel, Mohammad H. Marhaban, M. Iqbal Saripan,
and Napsiah Bt. Ismail. Review of visual odometry: types, approaches,
challenges, and applications. https://link.springer.com/article/10.1186/
s40064-016-3573-7, 2016.

[2] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-
direct monocular visual odometry. https://rpg.ifi.uzh.ch/docs/TRO17
Forster-SVO.pdf, 2021.

[3] Mordor Intelligence. Drones market size and share analysis - growth
trends and forecasts (2024 - 2029). https://www.mordorintelligence.com/
industry-reports/drones-market, 2023.

[4] Charles F. F. Karney. Geographiclib 2.3. https://geographiclib.
sourceforge.io/C++/doc/index.html, 2023.

[5] MAVSDK Development Team. Mavsdk (main). https://mavsdk.mavlink.
io/main/en/index.html, 2023.

[6] PX4 team. Gazebo classic simulation. https://docs.px4.io/main/en/sim
gazebo classic/#video-streaming, 2023.

[7] PX4 team. Px4 autopilot user guide. https://docs.px4.io/main/en/index.
html, 2023.

[8] Falin Wu, Kefei Zhang, and Gang-Jun Liu. A study of gp-
s/galileo performance in urban environment using a simulation
tool. https://web.archive.org/web/20070618114230id /http://user.gs.rmit.
edu.au/falin/english/publications/proceedings/Wu-etal2006Geo.pdf, 2006.

https://github.com/Oleksandr0605/VO_localization_and_mapping
https://github.com/Oleksandr0605/VO_localization_and_mapping
https://link.springer.com/article/10.1186/s40064-016-3573-7
https://link.springer.com/article/10.1186/s40064-016-3573-7
https://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf
https://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf
https://www.mordorintelligence.com/industry-reports/drones-market
https://www.mordorintelligence.com/industry-reports/drones-market
https://geographiclib.sourceforge.io/C++/doc/index.html
https://geographiclib.sourceforge.io/C++/doc/index.html
https://mavsdk.mavlink.io/main/en/index.html
https://mavsdk.mavlink.io/main/en/index.html
https://docs.px4.io/main/en/sim_gazebo_classic/#video-streaming
https://docs.px4.io/main/en/sim_gazebo_classic/#video-streaming
https://docs.px4.io/main/en/index.html
https://docs.px4.io/main/en/index.html
https://web.archive.org/web/20070618114230id_/http://user.gs.rmit.edu.au/falin/english/publications/proceedings/Wu-etal2006Geo.pdf
https://web.archive.org/web/20070618114230id_/http://user.gs.rmit.edu.au/falin/english/publications/proceedings/Wu-etal2006Geo.pdf

	Introduction
	Problem
	Requirements
	Hardware requirements
	Software requirements

	Hardware for applying algorithms
	UAV configuration
	Visual Odometry
	Approaches

	Algorithm
	Introduction
	Choice of Libraries
	Data Flows
	Implementation

	Testing
	Real-world testing
	PX4 Autopilot

	Results
	Problems and troubleshooting
	Calibrating the GPS module
	Creating custom 3D models for specific needs
	Hardware stability
	Appropriate testing

	Summary
	References

