
Joker: Implementing Docker Containerization
Functionality

Taras Yaroshko, Nazar Demchuk, Oleksandr Shchur, Liubomyr Oleksiuk
Mentor: Hermann Yavorskyi

Computer Science Programme, Faculty of Applied Sciences, Ukrainian Catholic University
Lviv, Ukraine

Abstract—This report presents the implementation of Joker,
which is the analog of Docker written in Rust and C++. The
report reveals the design, features, and challenges encountered
during the software development process.

Index Terms—Docker, containerization

I. INTRODUCTION

In the landscape of the modern software development in-
dustry, there is always a demand for the scalable, flexible,
and efficient deployment of applications. Docker, a tool for
containerization (a much more lightweight form of virtual-
ization that enables the packaging of an application and its
dependencies/configurations into a standardized unit called a
container), has revolutionized how we build, ship, and run
applications.

II. HOW DOCKER WORKS

Before delving into Joker’s implementation details, it is
important to understand the fundamental principles of Docker
and its components, which are crucial in understanding the
containerization workflow, file loading, and resource manage-
ment, Fig. 1.

Docker utilizes the containerization concept to encapsulate
applications and their dependencies, enabling seamless deploy-
ment across different environments. Containers are not only
portable and lightweight but also ensure consistency in the
execution of applications. Containers are the answer to the
question, ”Why does it work on your machine but does not
seem to work on mine?”.

A. Docker Engine

At the core of Docker is the Docker Engine. It is the
software responsible for building, running, and managing con-
tainers. The engine consists of a server and a lightweight (but
powerful) command-line interface (CLI) that communicates
with the Docker daemon, managing container operations.

B. Containers

Containers are instances of Docker images. They encap-
sulate the application and its dependencies, running in an
isolated environment. Containers ensure consistency across
various development, testing, and production environments,
fostering a ”run anywhere” philosophy.

C. Dockerfile

To create a Docker image, you have to use a text file called a
Dockerfile. This file contains a set of instructions for building
a Docker image, specifying the base image, application code,
dependencies, and runtime configurations.

III. SOLUTION OVERVIEW

Joker emulates the interface and functionality of Docker by
using Linux kernel tools such as namespaces and cgroups to
isolate container execution and manage the existing resources.
The general structure of the project is presented in Fig. 2.

IV. DETAILS OF IMPLEMENTATION

A. Server-Client Communication

In our C++ implementation, the server-client communica-
tion system is designed to facilitate asynchronous file transfers
and execution. Here is how it works:

1) Listening for Connections: The Server creates a socket
and binds it to a specified port (e.g., 8080). It listens for
incoming client connections and accepts them when they
arrive.

2) Connecting to the Server: The client creates a socket
and connects using it to the Server’s IP address and port.

3) Client Request Processing: The Server’s main thread
continuously accepts client connections and processes their
requests. Upon receiving a client request, it distinguishes
between different types based on the first byte received:

• If the first byte is 0, it indicates the container files transfer
request.

• If 1 – a request for a trace of daemon stdout outputs.
• If 2 – a request for the stdout output of a certain container.
4) Sending the Container Data: The client can send binary

files and corresponding configuration files to the Server. It
sends the Server the names of the files, their respective
sizes, and the files themselves (binary file to be executed or
configuration file).

5) Requesting Log and Trace Information: The client can
request log information from the Server by sending a specific
request identifier. Upon receiving the log request, the server
sends back the log content to the client, which is the trace of
the daemon or the log of the specific container.

6) Closing the Connection: After completing the file trans-
fer or log request, the client closes the connection with the
Server.



Fig. 1. The architecture of Docker [1].

B. Namespaces

Namespaces [2] is the kernel feature providing a way to
virtualize the different aspects of program-system interaction.
There are numerous namespaces, each responsible for some
part of that interaction. The more namespaces are used, the
better isolation from the host system can be ensured.

Let’s review the functionality within namespaces, which we
used as layers of isolation for the containers:

• Mount Namespace
Each container has an isolated file system environment,
which means that changes to the file system within a
container do not affect the host or other containers. This
namespace was the most important one, as it was crucial
to provide separate mount points for each container to
ensure adequate encapsulation.

• IPC Namespace
Allows each container to have independent shared mem-
ory segments, semaphores, and message queues within
the container’s processes.

• Network Namespace
Isolates network-related resources so that every container
can have individual network interfaces, IP addresses,
routing tables, etc.

• PID Namespace
It isolates the process ID space (containers have their own
PID namespace, and processes within a container are un-
aware of processes outside the container). This isolation
is fundamental for maintaining container independence.

• UTS Namespace

It isolates the hostname and NIS (Network Information
Service), which allows every container to have a unique
hostname and domain name independent of other con-
tainers and the host system.

• Time Namespace
Allows processes to see different system times similar to
the UTS namespace.

• User Namespace
Allows mapping of user and group IDs inside the con-
tainer to different IDs outside the container. That means
that users inside the container can have restricted privi-
leges, while the container can interact with the host as
a non-root user, so it avoids the potential risk associated
with running processes as root within the container.

C. cgroups

Cgroups [3] allow us to define resource constraints for a
group of processes, preventing one container from monopoliz-
ing resources at the expense of others. This helps in achieving
better resource utilization and isolation in containerized envi-
ronments. Cgroup manager provides access to create, configure
and store cgroups.

Cgroups features are somewhat similar to namespaces.
However, they are used in the context of hardware resource
usage restrictions.

In our implementation, it is possible to limit the container
in the use of the processor, the speed of reading and writing,
swap, soft and hard (the container process will be killed in
case of using more memory) memory limits, a limit on the
number of processes that can be created in the container.



Fig. 2. Joker UML diagram.

V. INTERFACE

A. Client
1) joker: Command Line Interface Tool : The Joker CLI

provides a comprehensive set of commands, enabling users to
perform various tasks related to containerization. Here is the
list of Docker commands that we implemented:

• joker add
Function: Add a new daemon with a specific IPv4 address
and port.
Example:
joker add daemon_name --ip 127.0.0.1

--port 8080

• joker checkout
Function: Switch to a specific daemon
Example: joker checkout daemon_name

• joker send
Function: Send the configuration file to the daemon
Example: joker send config_file_name

• joker run
Function: Run a specified container on the current dae-
mon
Example: joker run container_name

• joker trace
Function: Trace the events on the daemon (use stdout by
default).
Example: joker trace

• joker logs
Function: Get the output of the specific container (use
stdout by default).
Example: joker logs container_name

B. Configuration Files

In order to have a generalized format of configuration files
for both containers and namespaces/cgroups, we created our
own analog of Dockerfile – a file with extension .joker. Here’s
how the configuration file for the container (which is sent to
the daemon after the container) looks:

Listing 1. Container configuration file example
Container name: communicate_client
IPC namespace name: ipc_ns
User namespace name: user_ns
Mount namespace name: mnt_ns
PID namespace name: pid_ns
Network namespace name: net_ns
Time namespace name: time_ns
UTS namespace name: uts_ns
Cgroup name: cgroup_example

Also, here are the examples for cgroups and namespaces
configuration files, respectively:

Listing 2. Cgroups configuration file example
Cgroup
Cgroup name: pid-limit
Pids max: 1



Listing 3. Container configuration file example
Namespace-template
ID: 1
Namespace type: 1
New root filesystem path: ./data/alpine_rootfs
Filesystem: ext4
Put old: .put_old1

Namespace-template
ID: 2
Namespace type: 6
Hostname: hostname from template!

Namespace-template
ID: 3
Namespace type: 2

Namespace
Namespace name: test_1
Template-Id: 1
Namespace type: 1

Namespace
Namespace name: test_2
Template-Id: 1
Namespace type: 1

Namespace
Namespace name: uts_1
Template-Id: 2
Namespace type: 6

Namespace
Namespace name: pid_1
Template-Id: 3
Namespace type: 2

VI. FUTURE PLANS

As for the future plans, we would like to incorporate a few
more features into our implementation:

1) Add a TLS handshake (a process when a client and
server exchange specific messages to verify each other
and establish the encryption algorithms and session
keys) to ensure a secure connection between the com-
municating sides.

2) Develop a standardized format for all the configuration
files – container configs (with the extension .joker) and
daemon configs (with the extension .ini).

The project’s GitHub repository: https://github.com/Joker-
containers.

REFERENCES

[1] Docker Documentation, Docker Overview. docs.docker.com/get-started/
overview/.

[2] Linux Documentation Project, Namespaces Manual Page. https://man7.
org/linux/man-pages/man7/namespaces.7.html.

[3] Linux Documentation Project, Cgroups Manual Page. https://man7.org/
linux/man-pages/man7/cgroups.7.html.


