ICMP-based Rootkit

Roman Bernikov*, Nazar Kononenko*, Ivan-Vitalii Petrychko*
* Faculty of Applied Sciences of Ukrainian Catholic University, L'viv, Ukraine

Abstract—The paper’s aim is to introduce Rootkit — a collection
of computer software designed to enable access to a computer
without being detected. This package is designed strictly for
educational and research purposes. Here, we will discuss our
main findings and implementations. The paper consists of several
sections:

o Introduction. This section provides a brief review of our
rootkit, its capabilities, and core concepts.

o Implementation. Here, the main implementation choices are
explained, as well as the reasons that lead to them.

o Performance impact. In this section, we compare the per-
formance of different rootkit implementations.

+ References. This page mentions all materials and articles
that we’ve used in our work.

I. INTRODUCTION

A rootkit is a type of malicious software designed to provide
unauthorized access or control over a computer system while
remaining hidden from detection. Rootkits typically operate
in the kernel of a computer’s operating system, giving them
significant control while avoiding detection.

The unique aspect of our rootkit is its use of the Internet
Control Message Protocol (ICMP), which allows us to send
signals to infected computers. This functionality allows us to
run specific software remotely wherever we want.

The operating system kernel is often modified to prevent
threats from rootkits. Thus, we tried to create one that will
use different approaches for different kernel versions to be
more flexible for different Linux kernel versions.

II. IMPLEMENTATION
A. Loadable kernel module

P

User-space applications J [Hardware

3 ¢
Kernel core

g & £

Modules

A

pe

\ Linux kernel Y,

Fig. 1: Linux kernel structure.

A loadable kernel module (LKM), Fig. 1, is an object file
that contains code to extend the running kernel, or so-called
base kernel, of an operating system. LKMs are typically used

to add support for new hardware (as device drivers) and/or
filesystems or for adding system calls. When the functionality
provided by an LKM is no longer required, it can be unloaded
in order to free memory and other resources. As it runs in the
kernel of an operating system, we can have access to many
resources and, in the same way, be undetected. That’s the ideal
place to place our malicious software for a Rootkit.

B. Syscall table hijacking

The basic implementation we started with included
changing the syscall table. Since the address of the ta-
ble varies from machine to machine, we needed to find
it in our runtime. To locate the table, we use the
syscall_kallsyms_lookup_name (), which is defined
in kallsyms.h and used to get the address of functions.
Then, we replaced the address of the system call with the
address of the system call we modified. This requires changing
the CPU mode to allow to write to read-only pages in kernel
mode (so-called ring 0). On x86 processors, the bit 16, ”"Write
protect” of the CRO register is responsible for this. There are
no such registers for ARM processors, so our rootkit works
only on x86 processors.

Here is a code example of how to do that:

static inline void write_cr0_forced (unsigned
long val) {

unsigned long force_order;
asm volatile(
"mov %0, %$%crO"

"+r"(val), "+m" (_ _force_order));

}

static inline void protect_memory (void) {
write_cr0_forced(cr0);

}

static inline void unprotect_memory (void) {
write_cr0O_forced(cr0 & ~“0x00010000);

}

In general, our algorithm for hooking syscalls looks as
shown in Fig. 2.

C. Implemented hooks and their functionality

As was previously said, we implement malicious logic by
hooking syscalls responsible for various Linux commands.
Here is a list of Linux syscalls that we used to hook, along
with a description of the new functionality:

o sys_Kkill: hooking this syscall allows to intercept signal
together with process ID contained in the registers RSI
and RDI respectively. Our implementation filters signals
by their value and various logic depending on it.
Example of hooked signals:

kallsyms_lookup_na
me()

sys_call_table()

unprotect_memory()

hijack_syscall()

protect_memory()

Fig. 2: Syscall Table hijacking algorithm.

#define HIDEMODULE 64 // Hides rootkit
from LKM list

#define SHOWMODULE 63 // Returns rootkit
back

#define HIDEPROCESS 62 // Hides specified
by <pid> process

#define SHOWPROCESS 61 // Reveals hidden
process

sys_openat: hooking openat syscall allows to disable
creating or opening files with specific prefix. The im-
plementation consists of obtaining pathname from the
pointer in the RSI register, filtering it for prefix presence,
and if match — returning -ENOENT signal that will result
in an exception for absent permissions.

sys_getdents64: hooking getdents64 syscall allows hide
files with specific prefixes and process with saved PID.
Implementation obtains dirent struct, which represents a
pointer to a buffer where directory entries are stored and
file descriptor referring to the currently open directory.
Hook implementation requires copying directory entries
from user space to kernel space while returning filtered
entries back.

sys_unlink: hooking unlink syscall allows to forbid delet-
ing a file from the system. When invoked, it receives
a pointer to the path to the file in RDI register, so to
implement the required logic will be enough to filter it
for prefix presence.

sys_execve: hooking execve syscall allows to block the
execution of any program whose name contains the
specified prefix (antivirus in our case). The logic
is the same as for sys_unlink syscall: check if the path
pointed by the RDI string contains a prefix and return
EACCES signal if so.

sys_rmdir: hooking rmdir syscall allows us to forbid
deleting a directory that contains the specific word in the
name (virus in our case). We check for name, stored
in the string pointed by the RDI register and return -
EACCES.

sys_unlinkat: the unlinkat system call operates in exactly

the same way as either unlink or rmdir so the logic of
hooking is the same.

D. Ftrace

The hijacking of the syscall table involves modifications to
the table itself, which is detectable. Additionally, the process of
unprotecting memory is closely tied to the architecture of the
processor, making it a delicate operation. Given also that the
development for the Linux kernel varies significantly with each
kernel version, we have adopted two distinct methodologies to
address these challenges: hijacking syscall table and replacing
original syscalls with hooks (see here) and by using ftrace — an
internal tracer designed to help out developers and designers
of systems to find what is going on inside the kernel.

The ftrace was originally created to attach callbacks to the
beginning of functions to record and trace the flow of the
kernel. We used those callbacks to hook function calls.

The main difference between the first and second ap-
proaches is that in the case of trace implementation, we
don’t directly change syscalls for our hooks, but instead, we
work with a syscall wrapper that can be used for debugging,
monitoring, live patching or, in our case, hooking. This allows
us to inject our logic into the ftrace flow and replace the
execution of the original syscall with our hook.

The main advantages of this approach are greater invisibil-
ity, as it is more difficult to track, and version independence
(as we don’t need to work with the syscall table and its
permissions).

E. ICMP-Based Command Execution

In addition to hooking the system calls, our rootkit incorpo-
rates a feature leveraging Internet Control Message Protocol
(ICMP) packets for remote command execution. ICMP is a
fundamental protocol within the Internet Protocol Suite and is
commonly used for network diagnostics. However, our rootkit
repurposes ICMP packets as a covert communication channel
for executing commands.

1) Netfilter: Netfilter is a powerful framework within the
Linux kernel that facilitates network packet filtering, manip-
ulation, and logging. It achieves this by providing a series
of hooks at various points in the network protocol stack
(Fig. 3). These hooks enable kernel modules to intercept
network packets as they traverse through the system, allowing
for customized packet processing.

The framework defines multiple hooks, each triggered at
a specific point in a packet’s journey through the kernel’s
network stack. These hooks include:

o NF_INET_PRE_ROUTING: This hook is the earliest
interception point immediately after the network interface
receives a packet before any routing decisions are made.
It allows inspection and modification of incoming packets
before the kernel processes them further.

o« NF_INET_LOCAL_IN: Triggered for packets destined
for the local host, following the routing decision.

« NF_INET_FORWARD: Engaged for packets that the
kernel has decided to forward to another destination.

"
'

'

'

'

' ‘ NF_INET_LOCAL_IN }—»
'

'

, o

'

'

network
card

—

Network
Protocol Stack

User space
application

network
card

Routing

|
I |

|

|

|

) |

|

—»{ NF_INET_LOCAL_OUT ‘ !
|

|

- '

|

|

Fig. 3: Netfilter hooks in kernel.

« NF_INET_POST_ROUTING: Invoked for packets about
to be transmitted out of the network interface after
routing.

o NF_INET_LOCAL_OUT: Activated for outgoing packets
generated by local processes.

2) Implementation: The functionality is implemented
within the icmp_cmd_executor function, registered as a
hook using Netfilter.

This function is invoked whenever an ICMP Echo Request
(ping) is detected in the NF_INET_PRE_ROUTING hook. By
placing our hook at NF_INET_PRE_ROUTING, we ensure
that the rootkit intercepts ICMP packets as soon as they arrive
at the network interface. The payload of the ICMP packet is
parsed to extract a command prefixed with “run:”. If such a
command is identified, it is extracted from the payload and
scheduled for execution in user mode.

III. PERFORMANCE IMPACT

We conducted a series of tests to evaluate the performance
impact of our rootkit, specifically in terms of CPU usage.
These tests were designed to measure and compare the CPU
usage before and after the insertion of our rootkit module.
Two scenarios were considered: one with no background
applications running and another with various applications
active.

The performance impact analysis of our rootkit was con-
ducted on a system with the following specifications:

e CPU: Intel Core i5-9300H CPU, 2.40GHz, 4 cores, 2
threads per core.
¢ Memory (RAM): 16GB DDRA4.
o Graphics Card: GeForce GTX 1650 Ti Mobile: 4GB
GDDR6.
o Operating System: Ubuntu 22.04.3 LTS, Kernel version:
6.2.0-39-generic.
The results from both scenarios indicate that our rootkit has
a negligible impact on CPU usage. The small CPU usage spike
can be seen at the moment of module insertion. This small
performance impact is crucial for maintaining the rootkit’s
stealth and ensuring its persistence on the host system without
arousing suspicion based on performance degradation.

i= Processes (*) Resources File Systems = B @ &
~ cPU ; .
[\modu\e insertion
104
s0%
——— - ™ i, () %
1min S0secs 40secs Nsecs Wsecs 10secs
I cru1 1,0% [cPu2 0,0% cPU3 3,0% CcPU4 2,0%
I cPus 0,0% [cpus 11,0% I cPu7 39% I cPus 2,0%
~ Memory and Swap
100%
20
MEmey Swap
3,5GB (21,2%) of 16,6 GB ® 9
Cache 4,0 GB 0 bytes (0,0%) of 2,1 GB

(a) No background apps.

el File systems = . o X

/‘\module insertion

e i = et I - S N =

i Processes @ Resources

CcPU

I cru1 2,0% [cPuz 4,0%] CPU3 24,3%] CPU4 4,0%
[cPus 15,7% [cPus 1,0% B cru7 0,00 B crus 4,0%
Memory and Swap
Memory swap
’4ZCE‘ZS.Uﬁzl‘ZﬁFWU_DCB

0 bytes (0,0%) of 2,1 GB
Cache 6,0GB oytes (0.0%) of 2,

(b) With background apps.

Fig. 4: Performance impact.

The code of the project is available at https://github.com/

nazar12314/Rootkit.

(1]
(2]
(3]
[4]
(5]
(6]
(71

REFERENCES

Multiple ways to hook syscall(s). Available at https://foxtrot-sq.medium.
cony/linux-rootkits-multiple- ways- to-hook-syscall-s-7001cc02ale6
Hooking or Monitoring System calls in Linux using ftrace. Available at
https://nixhacker.com/hooking-syscalls-in-linux-using-ftrace/

Linux LKM Rootkit Tutorial. Available at https://www.youtube.com/
watch?v=hsk450he7nl&t=12s

Write a Linux firewall from scratch based on Net-
filter. Available at https://levelup.gitconnected.com/

write-a-linux-firewall-from-scratch-based- on- netfilter-462013202686.
Linux syscall reference Available at https://syscalls64.paolostivanin.com/.
Linux syscall hooking Available at https://ritcsec.wordpress.com/2020/
11/22/linux-syscall-hooking/.

Linux kernel communication Available at https://infosecwriteups.com/
linux-kernel-communication-part- 1-netfilter-hooks- 15c07a5a5c4e.

https://github.com/nazar12314/Rootkit
https://github.com/nazar12314/Rootkit
https://foxtrot-sq.medium.com/linux-rootkits-multiple-ways-to-hook-syscall-s-7001cc02a1e6
https://foxtrot-sq.medium.com/linux-rootkits-multiple-ways-to-hook-syscall-s-7001cc02a1e6
https://nixhacker.com/hooking-syscalls-in-linux-using-ftrace/
https://www.youtube.com/watch?v=hsk450he7nI&t=12s
https://www.youtube.com/watch?v=hsk450he7nI&t=12s
https://levelup.gitconnected.com/write-a-linux-firewall-from-scratch-based-on-netfilter-462013202686
https://levelup.gitconnected.com/write-a-linux-firewall-from-scratch-based-on-netfilter-462013202686
https://syscalls64.paolostivanin.com/
https://ritcsec.wordpress.com/2020/11/22/linux-syscall-hooking/
https://ritcsec.wordpress.com/2020/11/22/linux-syscall-hooking/
https://infosecwriteups.com/linux-kernel-communication-part-1-netfilter-hooks-15c07a5a5c4e
https://infosecwriteups.com/linux-kernel-communication-part-1-netfilter-hooks-15c07a5a5c4e

	Introduction
	Implementation
	Loadable kernel module
	Syscall table hijacking
	Implemented hooks and their functionality
	Ftrace
	ICMP-Based Command Execution
	Netfilter
	Implementation

	Performance impact
	References

