UEFI-game with bootloader functions

Ivan Shevchenko
Faculty of Applied Sciences

Viktoriia Kocherkevych
Faculty of Applied Sciences

Yaroslav Klym
Faculty of Applied Sciences

Volodymyr Kuchynskiy
Faculty of Applied Sciences

Ukrainian Catholic University Ukrainian Catholic University Ukrainian Catholic University Ukrainian Catholic University

L’viv, Ukraine
v.kocherkevych@ucu.edu.ua

L’viv, Ukraine
ivan.shevchenko@ucu.edu.ua

Abstract—This report demonstrates and describes the imple-
mentation of three different games with boot managing capabil-
ities for the UEFI environment. The project’s objective was to
explore the feasibility of game development based on the EDK-II
framework for UEFIL. Three games were implemented, namely
Wordle, 2D Maze and 3D Maze.

For code details, visit GitHub Page [1].

Index Terms—UEFI, BIOS, boot manager, boot loader, EDK-II

I. INTRODUCTION

In this project, we aim to investigate and describe the
aspects of Unified Extensible Firmware Interface (UEFI) de-
velopment and the usage of low-level programming concepts
for developing complicated software.

UEFI [2] — is a specification that defines the architecture
used for booting the operating system and the interface for
interaction with it.

It must be pointed out that UEFI is not a Basic Input/Output
System (BIOS). Though it performs the same functions, it
overcomes many of the original BIOS’s limitations. The
biggest problem with BIOS is that its boot sector has a
memory limitation of 440 bytes, which is insufficient to boot a
modern operational system (OS). UEFI, on the contrary, has no
such restriction, and it also provides network booting, security
booting, and other advanced functionality.

To be able to develop for UEFI, we use EFI Development
Kit II (EDK-II) [3], [4] — an open-source modern firmware
development environment that provides necessary tools for
writing UEFI packages, modules, applications, and drivers [5].

In this project, our goal was to explore the capabilities
of EDK-II. We have created three UEFI applications: three
games, each implementing boot manager functionality. Specif-
ically, they are Text-based User Interface (TUI) Wordle and
2D and 3D Graphical User Interface (GUI) Mazes.

II. IMPLEMENTATION DETAILS
A. EDK-II

As was stated above, we use EDK-II as our development
environment. The first vital abstractions of this environment
are module and package. The module is the smallest separately
compilable part of the code, while the package groups zero or
more modules. Modules and packages are configured using
special module metadata (.inf), package metadata (.dec), and
platform description (.dsc) files.

L’viv, Ukraine
vokuchynskiy @ gmail.com

L’viv, Ukraine
yaroslav.klym@ucu.edu.ua

EDK-II is an open-source implementation of the con-
ventions specified in the standard (UEFI). That includes
all services, protocols, calling conventions, etc. However,
alongside the specifications, an environment also imple-
ments a handful of libraries designed to encapsulate low-
level protocols and provide a high-level abstraction, of-
ten mimicking interfaces present in the standard C library.
For example, PrintLib provides the functionality of the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL by wrapping it
with the interface of the printf function from the standard C
library.

B. Boot manager vs boot loader overview

It is important to note that we are implementing the boot
manager and not the boot loader in this project.

The boot loader is the program responsible for loading the
computer’s operating system. On the other hand, the boot
manager is a program responsible for providing an interface
for choosing between different boot loaders on the computer
if there is more than one.

The main tasks of a boot loader are to prepare an environ-
ment for the operating system kernel and to load the kernel
into the memory, while the boot manager’s tasks are to find
boot entries, provide an interface for choosing between them,
and launch the respective one. It is worth noting that each boot
entry can be both a boot loader and a UEFI executable that
returns control to the parent process upon exiting, contrary
to the boot loader that launches the OS and, therefore, never
exits.

C. Boot managing

In our games, we explored two different ways of boot
manager implementation.

1) Built-in boot manager: This method uses capabilities
of UefiBootManagerLib EDK-II library. The program ex-
tracts boot entries from Non-Volatile Random Access Mem-
ory (NVRAM) and chooses the hard-coded options out of
them. This approach has several disadvantages. Firstly, we
must rewrite and recompile our program whenever a new boot
entry is added. Secondly, frequent rewriting of NVRAM can
damage it.

2) EFI system partition (ESP) boot management: This
approach uses configuration files to access boot entries. These
configuration files provide information about the Globally

FSO:\EFI\> Wordle.efi
salad

Fig. 1. Wordle Game.

Unique Identifier (GUID) of the partition and the path to the
location of the targeted executable that should be launched
alongside the parameters that should be passed. In our imple-
mentation, one can also specify the path to the icon for each
boot entry that will appear in the game. This approach is much
better, as it is entirely user-customizable, and there is no need
for NVRAM rewriting.

ITII. TUI GAME

The first stage of our project was focused on getting familiar
with the UEFI environment. After setting up the environment,
we implemented our first application — a simple text game
analog to a popular Wordle game [6]. Upon the start of the
game, the random 5-letter word is chosen, and the player gets
six attempts to guess it. After each guess, the game responds
to the player, specifying letters placed in the right and wrong
places and letters not present in the word.

In our implementation, all possible words are read from the
configuration file words.txt located in the file system’s root
directory. After entering the word, each letter is marked with
“+” sign if it is in the right place, with “?” if it is in the wrong
place, and with ““_" if the letter is not in the word. The figure 1
shows an example of the game.

IV. 2D GUI GAME

The next step was introducing graphics to our game. For
that purpose, we use EFI_GRAPHIC_OUTPUT_PROTOCOL.
The idea behind this protocol is to represent a monitor as a
2D matrix of pixels with the ability to interact simultaneously
with whole sub-matrices of pixels.

Our maze is divided into square cells, each of which is a
path, a wall, or an exit, as shown in figure 2. In one of the
path cells, there is a sprite that can be controlled by the user.
Each cell is displayed in one go using the protocol described
above.

After displaying the whole labyrinth at the beginning, until
the sprite is not on the exit cell, the program listens for keys
the user presses. If Escape was pressed, the program exits,
returning the control to the parent process, and if one of the
direction keys was pressed (UP, RIGHT, DOWN, or LEFT) the
actor attempts to move in the specified direction. If the new

Fig. 2. 2D Labyrinth Game

Fig. 3. 2D Labyrinth Game Updated

cell has a path or exit, the attempt is considered successful,
and the program redraws exactly two cells: the old cell is
filled with black pixels, and the new cell is filled with the
sprite image. Otherwise, the keypress is ignored.

Upon exiting the labyrinth, the built-in EDK-II boot man-
ager (II-C1) is used.

By the end of the project, we had updated this game with
two main features: updated graphic with textures (displayed
in the figure 3) and switched to ESP boot managing (II-C2)
as it is more configurable.

V. 3D GUI GAME

This game is the 3D representation of the previous 2D
labyrinth with the same ability to boot the operating system
the user finds in the maze. In the figure 4, there is an example
of an exit that boots Alpine [7] — a lightweight OS.

To create 3D graphics for this game, we used ray casting [8].
Ray casting creates a 3D perspective of the 2D map. The main

Fig. 4. 3D Labyrinth Game

idea behind the algorithm is to go through every vertical stripe
of the screen, calculate the distance to the nearest wall, and,
depending on the distance and direction of the view, draw a
vertical line representing the wall. As we also used textures
for our game, during drawing, we colored them respectively
to the scaled columns of texture.

The maze itself implements the functionality of an ESP
boot manager II-C2 and, upon escape, launches the respective
executable specified in the configuration file.

VI. CONCLUSIONS

In conclusion, we dived into the specifics of the develop-
ment for UEFI based on the EDK-II firmware. We managed
to create TUI and GUI games for UEFI, which perform the
functionality of a boot manager and can be launched not only
in Quick Emulator (QEMU) but also directly in the hardware.

REFERENCES

[11 Y. Klym, V. Kocherkevych, and I. Shevchenko, “UEFI-game with
bootloader functions,” Jan. 2024. [Online]. Available: https://github.com/
ishevche/UEFI-Game.git

[2] Unified Extensible Firmware Interface (UEFI) Specification, Aug. 2022.

[3] “EDK-II Source Code.” [Online]. Available: https://github.com/tianocore/
edk2

[4] “EDK-II Wiki” [Online].
tianocore.github.io/wiki

[5] TianoCore, “EDK-II Module Writer’s Guide.” [Online]. Available:
https://tianocore-docs.github.io/edk2- Module WriteGuide/draft/

[6] “Wordle Game.” [Online]. Available: https://wordlegame.org/

[7]1 “Alpine linux.” [Online]. Available: https://alpinelinux.org/

[8] “Raycasting Graphics Tutorial.” [Online]. Available: https://lodev.org/
cgtutor/raycasting.html

Available: https://github.com/tianocore/

https://github.com/ishevche/UEFI-Game.git
https://github.com/ishevche/UEFI-Game.git
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2
https://github.com/tianocore/tianocore.github.io/wiki
https://github.com/tianocore/tianocore.github.io/wiki
https://tianocore-docs.github.io/edk2-ModuleWriteGuide/draft/
https://wordlegame.org/
https://alpinelinux.org/
https://lodev.org/cgtutor/raycasting.html
https://lodev.org/cgtutor/raycasting.html

	Introduction
	Implementation details
	EDK-II
	Boot manager vs boot loader overview
	Boot managing
	Built-in boot manager
	EFI system partition (ESP) boot management

	TUI game
	2D GUI Game
	3D GUI Game
	Conclusions
	References

