
MacTell: an LLM-Based Code Interpreter
Anastasiia Senyk

Applied Sciences Faculty
Ukrainian Catholic University

Lviv, Ukraine
anastasiia.senyk@ucu.edu.ua

Yaroslav Korch
Applied Sciences Faculty

Ukrainian Catholic University
Lviv, Ukraine

yaroslav.korch@ucu.edu.ua

Liliana Hotsko
Applied Sciences Faculty

Ukrainian Catholic University
Lviv, Ukraine

liliana.hotsko@ucu.edu.ua

Matvii Prytula
Applied Sciences Faculty

Ukrainian Catholic University
Lviv, Ukraine

matvii.prytula@ucu.edu.ua

Abstract—Mactell is a Swift-powered project designed to
integrate multiple functionalities into a macOS application.
By employing natural language processing, Mactell inter-
prets user commands into executable actions, significantly
improving user interaction within OS and productivity. Key
functionalities include command-line interface (CLI) man-
agement, web browsing, code execution, media playback,
and other OS-accessible tasks, all presented through an
intuitive, unified interface.

I. INTRODUCTION

Interacting with various graphical user interfaces
(GUIs) and command-line interfaces (CLI) can pose
challenges for many users. Issues often arise from the
time-consuming process of learning and remembering
specific commands, as well as the inherent complexity
of terminal syntax. In response to these challenges, our
project proposes the integration of a Large Language
Model within a user-friendly Swift application designed
for macOS.

This application aims to streamline user interaction by
offering a unified interface that simplifies the execution
of commands. Users can describe their desired tasks us-
ing natural language descriptions, which the application
interprets into actionable commands. Additionally, users
can monitor command execution status and effectively
manage workflows by verifying, saving, deleting, and
rerunning generated commands.

II. RELATED WORK

A. Open-Interpreter

OpenInterpreter [3] laid the groundwork as a terminal
application utilizing a Large Language Model (LLM)
to interpret user inputs and execute corresponding com-
mands.

OpenInterpreter offers users the flexibility to select
specific LLM models, whether free or paid, and execute

generated code based on user prompts. Despite these
capabilities, our investigation revealed several usability
challenges inherent in terminal-based programs. Conse-
quently, we aimed to develop a dedicated Swift appli-
cation to enhance user experience by providing a more
intuitive interface.

Moreover, concerns about the lack of robust security
measures in existing versions, aside from a beta version
running code in a container environment, underscored
the necessity for enhanced safety protocols in our ap-
plication. Furthermore, our goal extended beyond basic
code execution by exploring additional functionalities
enabled by LLM integration (see nest sections for de-
tailed discussion).

B. YAI

YAI [4], an AI-powered terminal assistant, shares sim-
ilarities with the MacTell in terms of security features,
such as user confirmation prompts (”Yes” or ”No”).
However, our experiments revealed that constant user
confirmation for routine actions (e.g., ”Open Safari”)
may hinder user convenience. As a result, we developed
a new approach using contextual indicators (green and
red functions) to enhance usability, as elaborated in the
next sections.

C. IBM – CLAI

IBM’s CLAI (Command Line Instrumentation as a
New Environment for AI Agents) [1] presents an in-
teresting approach despite receiving mixed feedback
from users and utilizing its own Large Language Model
(LLM).

Both CLI and MacTell projects share a common
goal: developing custom features aimed at enhancing
the usability of LLMs. These features are designed to
simplify interactions with LLMs, making them more



accessible for everyday use. IBM’s approach goes fur-
ther by creating specialized projects that enable LLMs
to leverage additional contextual knowledge, expanding
their capabilities.

However, this approach introduces challenges such
as longer setup times and the potential complexity of
extensive functionalities, which could overwhelm LLMs.
In contrast, our project emphasizes the development
of streamlined functions that prioritize simplicity and
efficiency in interacting with LLMs.

III. PROJECT DEVELOPMENT STEPS AND EASE OF
USE

A. Initial Concept and Execution

The initial step involved developing a basic system
where users could input commands in natural language.
The LLM, integrated into the backend, processed this
input to understand the user’s intent and generate cor-
responding terminal commands. These commands were
then executed, delivering the desired outcome without
requiring the user to directly interact with the terminal.

B. Enhanced with Logging and User Profiling

Subsequently, we incorporated a logging mechanism
to record each user input and the system’s response.
This feature creates a comprehensive interaction history,
facilitating tracking. Additionally, it personalizes the user
experience by adapting to the user’s interaction patterns
based on the saved messages.

C. Development of a User-Friendly Interface

Recognizing the importance of accessibility and ease
of use, the final step was to develop an intuitive interface
for the application. This interface, developed in Swift
specifically for macOS, offers users a comfortable and
visually appealing environment to input their commands
in natural language. The application not only displays the
history of saved interactions but also supports parallel
execution of tasks, an enhancement over the traditional
command-line interface (CLI).

IV. IMPLEMENTATION

A. Server

The asynchronous server is the core component of the
entire project and connects the Swift application to the
backend and database. Its functionality is divided into
the following sections:

• Message Listener (main coroutine).
• LLM Client.
• Database Interaction.
• Message Sender.
For a detailed exploration of the server’s functionality,

refer to the self-developed communication API between
the Swift frontend and the server (see Table I on page 4).

The main pipeline of the server includes the following
stages:

• Receiving: Receives a message from the Swift
frontend with the user’s request.

• Confirmation: Sends a confirmation to the Swift
frontend that the request has been received.

• Input Redirection: Redirects the user input to the
LLM (in a separate coroutine).

• Processing: Processes the response once received
from the LLM.

• Response Notification: Sends a message to the
frontend indicating that the response is ready.

• Execution Without Confirmation: If the LLM
response requires no user confirmation, it is sent
directly to the user (or executed first, with the result
then sent to the user).

• User Confirmation Request: If user confirmation
is needed, a message is sent to the Swift application
to request confirmation from the user.

• Execution With Confirmation: Upon receiving
user confirmation, the pipeline continues as de-
scribed above.

Throughout these actions, the database continuously
refreshes its contents based on the current state of
the user’s request. This operation occurs in a sepa-
rate coroutine, ensuring non-blocking, thread-safe server
communication.

B. Function Calling

For OpenAI models starting from GPT-3.5-turbo, the
Function Calling technique is used. When the LLM
identifies an appropriate function to respond to a user’s
request, it returns the result in JSON format, mentioning
this function and its input.

To enhance user safety, functionalities are categorized
into two groups: green for actions considered safe that
do not require user confirmation and red for actions that
require user consent before execution. Green functions
include tasks like searching Google or composing an
email (but not sending it). Red functions explicitly
inform the user of the intended action, such as sending
a message or executing LLM-generated code.

The list of integrated functionalities includes:
Green Functions:
• Open macOS Application: Opens the specified

macOS application (e.g., FaceTime, Notes, Mes-
sages, Safari).

• Tell Date and Time: Uses VoiceOver to announce
the current date and time.

• Compose Email: Composes an email to the recipi-
ent and opens the Mail window. The user must press
the ”Send” button.

• Play Music: Plays the track specified by the user
from the user’s library.



• Compose Note: Creates a note as specified by the
user and saves it in the Notes application.

• Perform Google Search: Searches Google based
on the user’s request and opens Safari with the
results.

• Tell Number of Unread Messages: Uses
VoiceOver to announce the number of unread mes-
sages.

Red Functions:
• Make Call by Contact Name: Calls the specified

contact via FaceTime.
• Make Call by Phone Number: Calls the specified

phone number via FaceTime.
• Run Generated Code: Executes scripts generated

by the LLM (supports AppleScript, Shell, and
Python code).

• Schedule Command: Schedules the specified com-
mand with a specified frequency.

• Write Message Using Contact Name: Writes a
message through the Messages app to the specified
contact.

• Write Message Using Phone Number: Writes a
message through the Messages app to the specified
phone number.

C. Asynchronous Database Interaction

The asynchronous nature of the server requires ap-
propriate handling of database interactions for different
coroutines to avoid data races, where multiple coroutines
access the same database row concurrently. We have
used global lock and unlock methods provided by
the asyncio library to resolve this issue.

In addition to obvious database columns such as user
input, a Status Code is also stored. This simplifies
the data retrieval process and maintains the state of the
entire pipeline.

When the application is closed, any ongoing processes
initiated by the user can still be completed, and the
resulting changes are updated in the database. Upon
reopening the application, these updates are fetched,
providing the latest pipeline state.

The database also supports direct message fetching,
which eliminates the need to resend identical requests to
the LLM APIs, making the process faster and cost-free.

D. Application

The application has two main windows: New and
Saved.

The New window starts empty and is dedicated to
the current running process. If the application closes,
all ongoing conversations in this window are lost, and
corresponding entries are deleted from the database.

Each message pair (bubble) in this window includes
two buttons allowing users to save it to the Saved

Fig. 1. Example of the interaction with the application. Start with
a prompt, explore the generation status, and find the result in a few
seconds.

Fig. 2. Code generation examples.

window. If the message is in both windows, only one
bubble instance is in the memory.

The second button is either Rerun or Confirm. The
Rerun button allows the user to rerun the previously
generated (by the LLM) code or completely regener-
ate the LLM’s response, which depends on what the
LLM has returned. For example, if the user asks to
”write a poem,” the LLM response will be regenerated
completely. But if he asks: ”Write the script that adds
two numbers. Add 2 and 2.”, only the script’s output
and execution status (successful or with errors.) will be
displayed. Examples of the interface are presented in
Fig. IV-D, IV-D, IV-D.

The application supports the simultaneous execution



Fig. 3. Case of the error.

of pipelines due to the server’s asynchronous nature.
Almost every Status Code received from the server
(or sent from the application) updates the UI to reflect
the pipeline’s state. This enables users to monitor the
status of their tasks effectively.

For detailed project documentation, refer to [2].

V. TESTING

• Crash Test. We have tried to spam the server with
multiple messages from the app to test for potential
concurrency problems.

• Speed. On average, the ChatGPT 3.5-turbo model
processed the user’s response in 2 seconds. How-
ever, the database fetching (when Rerun pressed)
simplifies this step and allows us to immediately
create a new process for the execution (if needed).

• Suggestions. LLM Suggestions – a way for an
LLM to notify a user about possible improvements
in the methods a user asks. After long tests, we
found that the best models currently cannot provide
suggestions for the user, even if his request is
strange. LLM hallucinates more than brings useful
information.

VI. POSSIBLE IMPROVEMENTS

The newest versions of LLMs from OpenAI have
introduced the capability to invoke combinations of
functions using a function-calling methodology. This
enhancement offers a promising way for our project,
requiring straightforward adjustments in how we parse
and utilize responses from the LLMs. By leveraging
this feature, our application could seamlessly integrate
more complex functionalities and provide richer user
interactions.

Current LLM APIs do not support for retaining con-
text, meaning they respond based solely on immediate
user input without remembering previous interactions.
Overcoming this limitation could enhance the natural
flow and continuity of conversations in our application,
making interactions feel more coherent and human-like.

Another area for improvement is expanding our ap-
plication’s support beyond macOS applications inte-
grated with AppleScript. Our project architecture is
flexible enough to accommodate new functions tailored

to specific tasks and requirements. For example, adding
functions like write_message_via_signal could
extend our application’s capabilities to platforms lacking
native AppleScript support.

VII. CONCLUSION

In conclusion, MacTell transforms MacOS interaction
by integrating a Language Model into a Swift-based
application. This allows users to effortlessly execute
commands using natural language for functionalities
such as CLI operations, web browsing, media control,
and others within a unified platform. The backend’s
asynchronous architecture ensures responsive command
execution, optimizing the overall efficiency. Also, con-
stant advancements in LLM capabilities will expand the
range of potential functionalities and services provided
by our application.

APPENDIX A

TABLE I
COMPREHENSIVE LIST OF STATUS CODES USED IN MACTELL

COMMUNICATION PROTOCOL.

Code Name Meaning Sender

-1 noActionTaken Default. Placeholder Server
0 sentForExecution User request sent to execution Server
1 askConfirmation Need confirmation for execu-

tion from user
Server

2 requestSentToAPI Request sent to LLM Server
3 submitUserRe-

sponse
The app tells to submit user
input to LLM

App

4 askRerun User requests the rerun App
5 rawText The LLM response is pure text Server
7 serverCrash Server crashed Server
8 confirmExecution User confirmed execution App
10 executedSuc-

cessfully
Command executed success-
fully

Server

11 executionError Command executed with er-
rors

Server

15 saveToBookmarks Save user request to Book-
marks

App

16 removeFrom-
Bookmarks

Remove user request from
Bookmarks

App

18 deleteUserMes-
sage

Delete user request entirely
from the Application

App

19 askAllSaved Retrieve all saved requests
from DB

App

20 sendAllSaved Send all saved requests from
DB

Server

REFERENCES

[1] M. Agarwal, J. J. Barroso, T. Chakraborti, E. M. Dow, K. Fadnis,
B. Godoy, M. Pallan, and K. Talamadupula. Project clai: Instru-
menting the command line as a new environment for ai agents.
ArXiv, 2020. https://arxiv.org/abs/2002.00762.

[2] Y. Korch, M. Prytula, A. Senyk, and L. Hotsko. Interpreter
documentation. https://github.com/NaniiiGock/Interpreter, 2023.

[3] Valerie. Open interpreter — a fantastic tool that will allow ai to
run code on your computer. Medium, Dare To Be Better, https:
//medium.com/dare-to-be-better/def7eef2d211, September 2023.

[4] Jonathan Vuillemin. Yo: Ai powered terminal
assistant. Medium, https://medium.com/@jovllmn/
yo-ai-powered-terminal-assistant-958408e8f1c7, April 2023.

https://arxiv.org/abs/2002.00762
https://github.com/NaniiiGock/Interpreter
https://medium.com/dare-to-be-better/def7eef2d211
https://medium.com/dare-to-be-better/def7eef2d211
https://medium.com/@jovllmn/yo-ai-powered-terminal-assistant-958408e8f1c7
https://medium.com/@jovllmn/yo-ai-powered-terminal-assistant-958408e8f1c7

	Introduction
	Related Work
	Open-Interpreter
	YAI
	IBM – CLAI

	Project Development Steps And Ease of Use
	Initial Concept and Execution
	Enhanced with Logging and User Profiling
	Development of a User-Friendly Interface

	Implementation
	Server
	Function Calling
	Asynchronous Database Interaction
	Application

	Testing
	Possible Improvements
	Conclusion
	Appendix A
	References

