
DeepDendro: Parallel C++ Neural Network
Framework

Yaroslav Korch
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

yaroslav.korch@ucu.edu.ua

Matvii Prytula
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

matvii.prytula@ucu.edu.ua

Anastasiia Senyk
Faculty of Applied Sciences

Ukrainian Catholic University
L’viv, Ukraine

anastasiia.senyk@ucu.edu.ua

Abstract—Deep learning models often require large amounts of
data to be trained effectively. Hierarchical clustering algorithms
can be used to group similar data points together and reduce the
amount of data required for training. However, traditional hier-
archical clustering algorithms can be computationally expensive
and not scalable to large datasets. In this paper, we propose
DeepDendro, a parallel system designed specifically for deep
learning applications. We implement DeepDendro using C++ and
Intel’s TBB [1] library for parallelization. Our algorithm uses a
PipeDream [2] approach for parallel training of Neural Networks.
The proposed algorithm achieves significant speedup compared to
traditional hierarchical clustering algorithms while maintaining
high accuracy in results.

Index Terms—parallel and concurrent programming, multi-
threading, C++, machine learning, high-performance computing

I. INTRODUCTION

Deep neural networks (DNN) have achieved remarkable
success in various fields, such as computer vision, natu-
ral language processing, and speech recognition. However,
training DNNs can be computationally expensive and time-
consuming, especially for large datasets and complex models.
The traditional approach of training DNNs on a single machine
can take days or even weeks to converge to an acceptable level
of accuracy. This long training time can be a bottleneck for
many applications that require fast and efficient training of
DNNs.

To address this problem, researchers have proposed various
techniques to speed up the training process of DNNs. Some
strategies focus on dividing the training data across different
machines. This type of parallelism is called data parallelism.
However, it has its bottlenecks, such as synchronizations.
Moreover, it is much more often applicable when dealing with
enormous datasets, where one machine with cannot fit all the
data into its memory. On the other hand, new complex models
also require a lot of parameters to keep track of in order to
make them more sophisticated and applicable in real-world
scenarios. This is where model parallelism can help. It is based
on the idea of distributing the model across different devices,
each storing its part of the model and updating corresponding
parameters. Nevertheless, such models are even more rare
in the case of the average user, who trains its deep neural
network.

In this report, we present a parallel C++ neural network
library that leverages pipeline parallelism to enable faster
DNN training. Our library is inspired by PipeDream, a sys-
tem that uses pipeline parallelism to optimize DNN training.
However, our library goes beyond PipeDream by providing a
user-friendly interface for building and training DNN mod-
els in C++. Our library also supports various optimization
techniques, such as data parallelism and model parallelism,
to further improve the performance of DNN training.

II. EXPLORED APPROACHES

As the Neural Networks become more and more complex,
so does the time required for their training. Also, the compu-
tational capabilities of the processors develop with time but
not as fast as the market demands. Especially the AI market.
There is no chance to wait to improve the learning time of
the deep neural network by improving the hardware part. For
these reasons, there exists a lot of optimization algorithms to
optimize the neural network learning process.

When dealing with a huge amount of data, the first thing
that comes to mind is to divide it into smaller parts. In neural
network terminology, this technique is called minibatches [3].
They are beneficial for a number of reasons. At first, they allow
the use of smaller portions of matrix multiplication, which can
be more easily parallelized and thus optimized. Moreover, it
allows the application of the crucial part of neural network
learning, weight update, to be performed more often. This
means that, in general, fewer learning epochs (iterations) are
needed in order to achieve the same predicting accuracy. Also,
based on minibatch, there exist a lot of elegant optimization
algorithms.

A. Intra-Batch parallelism

Intra means in. So, it refers to the parallelization within
one mini-batch. That is, when the size of the mini-batch is
still large, we can divide it into even smaller parts.

Intra-batch parallelism involves dividing a single batch of
input data into smaller subsets and processing these subsets
in parallel using different workers or processing units. Each
worker processes a different subset of the input data in parallel
and computes the gradients for the corresponding subset of the



data. The gradients are then combined across all the workers
to update the model parameters.

Fig. 1. Intra-Batch Parallelism across 4 workers [2].

As shown in Fig. 1, each smaller subset of the input batch
is being processed by a separate worker. However, we can
observe a huge amount of idle time. For the record, here it
is assumed that, on average, the amount of time spent on
backward propagation is twice as much as the amount of time
spent on forward propagation for each microbatch.

B. Inter-batch parallelism

In inter-batch parallelism, the input data is divided into
multiple batches, and each batch is processed in parallel using
different workers or processing units. Each worker trains the
model independently on their assigned batch of data, computes
the gradients, and updates the model parameters based on the
gradients.

Unlike intra-batch parallelism, inter-batch parallelism does
not divide the input data into smaller subsets within each batch.
Instead, it divides the input data into multiple batches and
trains the model on each batch in parallel. The Inter-batch
input data batches are typically larger than the subsets used in
intra-batch parallelism. Each batch is then processed indepen-
dently and in parallel by different workers or processing units.
This allows for the training of the model on larger amounts
of data in parallel, which can accelerate the training process
and improve scalability.

C. Inter-batch vs. Intra-batch

The main difference between intra-batch parallelism and
inter-batch parallelism is in how the input data is divided for
parallel processing.

In intra-batch parallelism, a single batch of input data is
divided into smaller subsets, such as mini-batches or micro-
batches, and these subsets are processed in parallel by different
workers or processing units. The gradients are then combined
across all workers to update the model parameters.

In inter-batch parallelism, the input data is divided into
multiple larger batches, and each batch is processed indepen-
dently and in parallel by different workers or processing units.
The results are then combined to update the global model
parameters.

D. Further improvements – GPipe

GPIPE is a Google project that does a unique thing. It
combines the two mentioned types of parallelism, inter-batch
and intra-batch. That is, for the purpose of resource allocation,
we divide each of our miniBatch into microBatch. At the same
time, it gives a gain by reducing the time when one worker
waits for the result of another.

Fig. 2. GPipe [4].

According to Fig. 2, as soon as the zero workers have
processed the zero microbatch, he passes the result to the next
one and starts work on the first one himself, and so on. In this
case, we even have periods when all workers simultaneously
perform some calculations.

It is important to note that synchronization or connection
of all results occurs during the loss calculation in the stage
before the back prop. Then, the back prop happens according
to the same logic.

III. ASYNCHRONOUS SOLUTION – PIPEDREAM

PipeDream elegantly solves the pipeline bubbles problem
during neural network training. It does this using an asyn-
chronous update of the weights, which does not interfere with
the process of forward and backward passing in any way.

A. Partitioning Layers Across Machines

Given the model and the set of Machines, PipeDream’s first
challenge is to automatically partition the layers of the model
across available machines so as to minimize overall training
time.

The thing is that, usually, starting layers are bigger, while
ending layers are smaller, so equally dividing layers between
machines is not a good idea. There are three main charac-
teristics given for each layer that can help divide the model
equally:

• input size
• output size
• activation time
With these three things, we can figure out how to partition

and organize this self-efficient profiling effectively.

B. Work Scheduling

Unlike traditional pipelines, PipeDream is bi-directional.
Thus, every machine has to make the choice between two
options:



• performs the forward pass, thus pushing the mini-batch
to downstream machines,

• performs the backward pass for a different mini-batch,
thus ensuring progress in learning.

Always prioritizing forward or backward passes is bad.
Therefore, PipeDream alternates between two choices.

C. Implementation

As for our requirements, there was no particular reason for
implementing a profiler at this stage. However, the solution
for a bidirectional pipeline was highly required. Furthermore,
it had to be able to perform asynchronous weight updates,
without interrupting forward and backward propagation for
each microbatch

1) Pipeline organization: By conventional means, the im-
plementation of a bidirectional pipeline is impossible. Even the
flow graph must still be acyclic. However, this mention led us
to the idea of expanding the pipeline into a unidirectional one.
It is commonly known that the backward propagation follows
the forward propagation, and it cannot be changed. Therefore,
we do not need to, as the workers, perform both operations
of forward and backward passing. Instead, we could involve
more workers, where some would perform forward pass, some
would perform backward pass, and some would perform the
weight update. The worker management, therefore, could be
transferred to another library. In our case, that was oneTBB
from Intel [1].

The structure of the pipeline is formed out of the TBB’s
flow graph where forward and backward pass form a linear
regular pipeline that is two times longer than the bidirectional
would be. Moreover, the weight updates are totally different
branches of the graph.

2) Weight stashing: In order to implement an asynchronous
weight update, it has to somehow affect the forward and
backward passes without interrupting them. Therefore, in our
implementation, layers serve as storage for weights, activa-
tions, and gradients, while nodes of the flow graph are the
functions themselves (such as backward propagation, forward
propagation, pipeline populate, weight update, and loss func-
tion calculation).

Fig. 3. PipeDream Weight stashing [2].

If we closely look at Fig. 3, we can see that even when
the microbatch was processed by the worker in forward pass,
it still has to be run through the backward pass node. And
the crucial thing here is that the weights used for forward and
backward passes have to be the same. Now, imagine that an

asynchronous update happened in the middle of the process of
a microbatch traveling from the forward node to the backward
one. This means that the weights in the first case will differ
from those in the second. This could cause our model some
problems. Most likely, the loss function would not decrease.

The solution to this problem is weight stashing, which
means that for the microbatches available in the pipeline at
the moment, we store the version of weights by which it
performed its forward pass. By doing this, we can always
perform backward propagation using the version of weights. It
does require additional memory. However, there is an endless
trade-off between memory, time, and correctness.

3) Results measuring: Since the work is being spread
among different threads for the time computation decrease
aims, the process of time, accuracy, and loss function decrease
measuring is quite challenging. Furthermore, each worker is
processing a different microbatch, which is a different portion
of data. That is, to clearly measure such values, we would need
to synchronize them, then measure and keep on training. How-
ever, synchronization here means either flushing the pipeline
or stopping it. Both cases would result in the efficiency loss.
The further results are displayed in the corresponding section.

IV. CONVOLUTIONAL NEURAL NETWORKS

A. Convolutional Layers

The convolutional layers in NN’s are widely used for
image classification, facial recognition, autonomous driving,
etc. They thrive because of the computations’ efficiency and
the kernels’ reusability. Once the CNN has trained a kernel,
it is used for the whole input rather than in one place, as in
ANNs.

We have implemented 2D and 3D Convolutional Layers that
use 3D and 4D tensors, respectively. One extra dimension
is for the number of elements in one batch. For example,
for classifying 2D images of the MNIST dataset, one would
use (batch size, 28, 28) tensors. The constructor of a layer
accepts the number of filters, a filter’s shape, the activation
function (optional), and the input shape.

B. Max Pooling

There are two most popular types of pooling in CNNs —
Max Pooling and Average Pooling. However, Max Pooling has
been more useful during the last decade.

Max Pooling allows one to shrink the input shape while
keeping the essential features of the input. It is fast, requires
no learning, and is easy to use. For example, 2× 2 max pool
will reduce the input’s size by 4.

C. Flattening

When the convolution-related parts of NN’s architecture
have ended, one needs to connect the agglomerated input to
the ANN, and this is where flattening layers help. They are
used to reshape the input to a convenient dimension for dense
layers (usually 2D matrices) during forward propagation and
to transform the gradient back to the original shape during
backpropagation.



V. RESULTS AND ANALYSIS

A. MicroBatch loss function variation

Since the whole dataset is divided into smaller parts, the
loss function decrease is not as smooth as one would be in
the sequential model presented in Fig. 4.

Fig. 4. Loss function decrease plot, Sequential model

On different workers with different microbatches, it rather
looks like on this Figure 5, with noticeable noise. However,
we can clearly see that, in general, it is decreasing. The epochs
axis now does not really represent the progress we want for
the parallel model, as a weight update is being done after some
number of microbatches have been processed.

Fig. 5. Loss function decrease plot, Parallel model + Microbatches

B. Productivity

Productivity comparison depicted on Fig. 6 was done on the
same dataset MNIST [5] with the same network configuration:

• first inner layer 16 neurons, ReLU activation function,
• second inner layer 8 neurons, ReLU activation function.

Fig. 6. Productivity comparison, Parallel and Sequential Model.

The loss on microbatches was taken by averaging each 1000
processed microbatches and their loss function.

As it can be seen, the parallel model is near 2.5 times faster
than the sequential one.

C. Results of CNN

We have chosen to test our framework on the MNIST
dataset. Let us consider the following sequential model:

• ConvolutionalLayer2D: 4 filters, each has shape 5 × 5,
batch size = 10.

• FlatteningLayer2D.
• DenseLayer: 32 neurons, activation function — ReLU.
• DenseLayer: 10 neurons (as classes of digits), activation

— Softmax.
In Fig. 7, each batch included ten images (to use vector-

ization), and overall 18000 iterations were performed, which
resulted in only 3(!) epochs. The loss function values are
averaged within 100 elements to cover the spikes.

Fig. 7. Averaged Loss function, ConvLayer + DenseLayers.

Time: 40.7948 seconds, accuracy: 95.2778%. After only ≈
40 seconds on the machine, the accuracy is 95%+, which
is great, as this test did not include parallelization, and the
architecture consisting only of dense layers for this task took



7 minutes to achieve ≈ 91% accuracy. This shows the power
of convolutional layers and the speed of C++ language.

D. Comparison with other frameworks

One can compare our approach with Python’s Tensor-
Flow [6]:

Epoch 1/5
13s - loss: 0.2910 - accuracy: 0.9143

Epoch 2/5
12s - loss: 0.1553 - accuracy: 0.9545

It can be seen that TensorFlow’s implementation took 25
seconds to achieve the same accuracy score. Our team consid-
ers this a not-bad performance, given the difference of 60%.

VI. CONCLUSION

This paper introduces DeepDendro, a parallel neural frame-
work designed specifically for deep learning applications.

Implementing DeepDendro using C++ and Intel’s TBB
library and combined with the novel algorithm based on
PipeDream’s approach enables efficient parallelization and
brings significant advantages over traditional hierarchical clus-
tering algorithms. In addition, the framework also provides
the possibility of using convolutional layers, which are widely
used in image classification tasks.

The findings of this study offer insights into the impact of
parallelization on various aspects of neural network training,
such as data parallelism and model parallelism. By evaluating
the performance, speedup, and productivity of DeepDendro

compared to traditional approaches, this study provides em-
pirical evidence of the advantages and trade-offs associated
with parallelization in deep learning tasks.

The code of the project is available at https://github.com/
anastasiasenyk/DeepDendro.

REFERENCES

[1] “Intel onetbb documentation,” Intel Corporation, 2023, accessed on May
30, 2023. [Online]. Available: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html%23gs.z664wb

[2] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1–15.
[Online]. Available: https://doi.org/10.1145/3341301.3359646

[3] X. Peng, L. Li, and F. Wang, “Accelerating minibatch stochastic gradient
descent using typicality sampling,” CoRR, vol. abs/1903.04192, 2019.
[Online]. Available: http://arxiv.org/abs/1903.04192

[4] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and
M. Zaharia, “Memory-efficient pipeline-parallel DNN training,”
CoRR, vol. abs/2006.09503, 2020. [Online]. Available: https:
//arxiv.org/abs/2006.09503

[5] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
http://yann.lecun.com/exdb/mnist/, 2010. [Online]. Available: http://yann.
lecun.com/exdb/mnist/

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

https://github.com/anastasiasenyk/DeepDendro
https://github.com/anastasiasenyk/DeepDendro
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html%23gs.z664wb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html%23gs.z664wb
https://doi.org/10.1145/3341301.3359646
http://arxiv.org/abs/1903.04192
https://arxiv.org/abs/2006.09503
https://arxiv.org/abs/2006.09503
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/

	Introduction
	Explored Approaches
	Intra-Batch parallelism
	Inter-batch parallelism
	Inter-batch vs. Intra-batch
	Further improvements – GPipe

	Asynchronous solution – PipeDream 
	Partitioning Layers Across Machines
	Work Scheduling
	Implementation
	Pipeline organization
	Weight stashing
	Results measuring


	Convolutional Neural Networks
	Convolutional Layers
	Max Pooling
	Flattening

	Results and analysis
	MicroBatch loss function variation
	Productivity
	Results of CNN
	Comparison with other frameworks

	Conclusion
	References

